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Abstract. Web frameworks play an important role in modern web ap-
plications, providing a wide range of configurations to streamline the
development process. However, the intricate semantics, facilitated by
framework configurations, present substantial challenges when conduct-
ing static analyses on web applications. To mitigate this issue, exist-
ing approaches resort to manually modeling framework semantics for
static analysis tools. Unfortunately, these manual works are both time-
consuming and error-prone, especially considering the vast array of web
frameworks and their frequent updates.
In this paper, we present the first automated method for inferring web
framework semantics. Our innovative approach can automatically deduce
framework specifications by mutating configurations. We have developed
a prototype called AutoWeb and performed extensive experiments on
three popular Java web frameworks. The empirical results show that Au-
toWeb is comparable to these manual approaches in terms of precision,
with a false negative rate of 8.2% and no false positives.

Keywords: static analysis · framework modeling · web framework ·
Java.

1 Introduction

Modern web applications are commonly built on top of web frameworks. Those
frameworks (e.g., Spring [25] and Spring Boot [24]) offer high-level abstractions
for common web tasks, thereby greatly simplifying the development process. For
instance, many frameworks provide concepts such as controllers in the popu-
lar model-view-controller (MVC) design pattern: developers can simply declare
handler methods for a particular URL without knowing the intricate request dis-
patching mechanism, and the framework is responsible for processing incoming
requests and dispatch them to corresponding handlers.

To effectively analyze web applications, it is crucial to precisely model the
semantics of their underlying frameworks, representing the possible frameworks
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behaviors at runtime. Otherwise, many existing static analyses become inappli-
cable. For instance, web applications are driven by frameworks to interact with
user requests, and there is no main method to start with. Furthermore, exist-
ing static analyses often fail to capture the dynamically introduced points-to
relations and call relations that arise from dependency injection and dynamic
dispatching mechanisms within frameworks, resulting in unsound and imprecise
results. Unfortunately, frameworks are notoriously hard to analyze statically.
They often employ hard-to-analyze dynamic patterns (e.g. reflection) to inter-
act with application code, and their concrete semantics are customized by the
application via configuration files or annotations. It is a daunting task, if not
impossible, to automatically analyze frameworks with good precision.

In practice, researchers resort to manually modeling framework semantics to
analyze web applications. Framework features were hard-coded in the analysis
implementation [29,5,21]. In addition, researchers have proposed several more
general solutions to specify framework semantics effectively modeling behav-
iors under given configurations [26,1]. For instance, IBM’s F4F [26] defined the
Web Application Framework Language (WAFL) to express framework-related
behaviors for specific web applications, where WAFL specifications are gener-
ated by hand-crafted generators (one for each framework). JackEE [1] declares
framework-related behaviors using Datalog rules, effectively mapping framework
configurations to static relations, which can be processed by the Doop [4] analy-
sis engine. Nevertheless, those existing approaches still need manual efforts and
can be labor-intensive and error-prone, particularly when frameworks undergo
frequent updates.

This paper presents an automatic method for inferring web framework se-
mantics. To the best of our knowledge, this is the first approach of such an at-
tempt. Since it is generally infeasible to directly obtain the concrete semantics by
analyzing the complex implementation details of web frameworks, we do not con-
sider various framework-specific concepts such as filters and controllers. Instead,
we focus on the relations that affect the application code, which are framework-
introduced but commonly required by static analyses, i.e., entry points, points-to
relations, and call relations5. Previous work [30,27] has also shown that the above
relations are crucial for the static analysis of web applications. Web frameworks
provide developers with hundreds of configuration parameters, allowing for the
customization of applications that exhibit rich semantics. Our goal is to auto-
matically deduce the semantics under given configurations, i.e., demystifying how
entry methods and call/points-to relations are introduced by frameworks using
particular configuration parameters. The framework semantics are abstracted
as mappings from configuration parameter sets to relation types, referred to as
specification in this paper. Specifications are framework-related, yet application-
independent, and can be applied to specific applications to model framework
semantics.

Based on the observation that a framework-introduced relation is declared by
the minimal sufficient and necessary set (MSNS), which is the set of minimum

5 Techniques described in this paper are applicable to infer other user-defined relations.
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configuration parameters to trigger this relation, we propose a mutation-based
approach to identifying the MSNS for each relation. Specifically, given an appli-
cation program construct P with framework-introduced relation R, our approach
first identifies the necessary condition of relation R by removing configuration
parameters from P until R cannot be triggered at runtime. Then, new configu-
ration parameters (mutated from identified necessary conditions) are introduced
to further verify that the set of necessary configuration parameters is sufficient
to trigger relation R.

We develop a prototype tool, AutoWeb, to demonstrate the effectiveness of
our approach. AutoWeb observes framework-introduced relations during execu-
tion, then mutates configuration parameters to identify the MSNS for a relation.
We have experimented with AutoWeb on three popular Java web application
frameworks, namely Servlet, Spring, and Apache Struts2. Experimental results
demonstrated that AutoWeb can automatically generate specifications as pre-
cise as the state-of-the-art manual approaches. To summarize, this paper makes
the following contributions:

– We propose the first automated method to infer web framework semantics,
by identifying the MSNS for framework-introduced relations.

– We develop AutoWeb, utilizing a novel mutation-based approach to deduce
the framework specifications automatically.

– We experimented AutoWeb on three popular Java web frameworks, and
experimental results demonstrated that the inferred specifications are com-
parable with hand-written specifications over precision and soundness.

The rest of the paper is organized as follows. Section 2 motivates our approach
with an example, and Section 3 describes AutoWeb in detail. We evaluate
the tool AutoWeb in Section 4. Section 5 reviews related work and Section 6
concludes this paper.

2 Motivation

In this section, we aim to introduce the dynamic relations facilitated by web
frameworks, illustrating their impact on static analysis through an example.

2.1 Motivating Example

Figure 1 gives an example application built on top of the Spring framework.
The execution flows for two URLs are illustrated in Figure 2. The example
processes two URLs: /root1/path1 and /root2/path2. URL /root1/path1
is handled by Controller1.handle1 and URL /root2/path2 is firstly pro-
cessed by doFilterInternal before being handled by Controller2.handle2.
In the example shown in Figure 1, an SQL injection vulnerability exists in line
49. This vulnerability occurs because Controller1.handle1()(line 8) invokes
ServiceImpl2.service() (line 46) at line 11, which directly passes input data
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1 @Controller
2 public class Controller1 {
3 @Autowired
4 @Qualifier("service2")
5 ServiceInterface srv;
6
7 @GetMapping("/root1/path1")
8 public String handle1(HttpServletRequest request){
9 ...

10 data = request.getParameter("name");
11 srv.service(data);
12 ...
13 }
14 }
15
16 @Controller
17 @RequestMapping("/root2")
18 public class Controller2 {
19 @RequestMapping("/path2")
20 public String handle2(HttpServletRequest request){
21 ...
22 data = request.getParameter("name");
23 sql = "update users set hit=hit+1 where name='"+data+"'";
24 statement.executeUpdate(sql);
25 ...
26 }
27 }
28
29 public class Filter1 extends OncePerRequestFilter{
30 protected void doFilterInternal(HttpServletRequest request, ...){
31 if(validateSqlCharactor(request)) // Santitizer
32 chain.doFilter(request, response);
33 ...
34 }
35 }
36
37 @Service("service1")
38 public class ServiceImpl1 implements ServiceInterface{
39 public String service(String name) {
40 // safe SQL operation
41 ...}
42 }
43
44 @Service("service2")
45 public class ServiceImpl2 implements ServiceInterface{
46 public String service(String name) {
47 ...
48 String sql = "select * from users where name='"+name+"'";
49 stmt.executeQuery(sql); // SQL injection
50 ...}
51 }

(a) Application code.
1 <!--web.xml configuration file-->
2 <web-app>
3 <filter>
4 <filter-name> myFilter </filter-name> <filter-class> Filter1 </filter-class>
5 </filter>
6 <filter-mapping>
7 <filter-name> myFilter </filter-name> <url-pattern> /root2/* </url-pattern>
8 </filter-mapping>
9 </web-app>

(b) XML configuration file. "myFilter" aliases the class "Filter1" in Figure 1a.

Fig. 1: Motivating example of a Spring-based application.
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Fig. 2: Execution flow of the example in Figure 1. Solid lines indicate direct call
edges, while dotted lines denote indirect calls. The content above the solid line
represents the callsite, with the line number appearing to the left of the colon.

to a SQL query (line 49). Note that Controller2.handle2 (line 20) also passes
input data to SQL query statements (line 24). However, it is considered safe since
the input request is sanitized by Filter1 at line 31, before being processed by
this handler.

The SQL injection in the above example can be detected via a classical
taint analysis which computes whether the parameters of SQL queries are input
data without being sanitized or not. However, without awareness of framework-
introduced relations, traditional static taint analyses often fail to recognize the
execution flow as in Figure 2, resulting in ineffective analysis results.

2.2 Framework-introduced Relations

Entry point Relation. Static analysis including taint analysis typically pro-
cess on a call graph consisting of all reachable methods from entry points. In
stand-alone Java applications, the main method is considered the entry point,
whereas in web applications, entry points are often the request-handling meth-
ods directly invoked by frameworks. In Figure 1, Controller1.handle1() and
Filter1.doFilterInternal() are entry points.

Entry point relations are defined by configuring methods and/or their declar-
ing classes with Java annotations or XML configurations. For example, as shown
in Figure 1a, the annotation @Controller (line 1) defines the entry class, and
the annotation @GetMapping (line 7) declares the entry method. Note that the
parameter values of annotations also specify corresponding request URLs (lines
7, 17, and 19). Additionally, entry points can be declared via XML configurations
as shown in Figure 1b.

Points-to Relation. Points-to relations denote the set of heap objects referred
to by a pointer variable. Frameworks can dynamically introduce points-to re-
lations: frameworks can create objects outside the application code and inject
these objects managed by frameworks into particular field references of appli-
cation code. In our example, an object with type ServiceImpl2 is managed by
the framework and injected into field reference Controller1.srv (line 5). Such
framework-introduced points-to relations cannot be computed by existing points-
to analyses. Consequently, a call graph algorithm based on points-to analysis will
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miss the call relation from line 11 to ServiceImpl2.service() (line 46), result-
ing in false negatives. On the other hand, a CHA-based call graph construction
algorithm will introduce a spurious call relation to ServiceImpl1.service()
(line 39), resulting in false positives.

Points-to relations are specified by annotating fields and the classes of in-
jected objects. In our example, the field Controller1.srv is annotated with
@Autowired (line 3) and @Qualifier (line 4), indicating that the field is in-
jected with framework-managed object service2. The @Service annotation at
line 37 and 44 suggest that object service1 and service2 are managed by the
framework, with type ServiceImpl1 and ServiceImpl2, respectively. Note that
the parameter value of @Qualifier matches with that of @Service (line 44),
indicating that object service2 is injected into field Controller1.srv.

Call Relation. Call relations can be statically computed using techniques such
as class hierarchy analysis (CHA) [11] or points-to analysis [18], to establish
connections between invocation sites and corresponding callee methods. Never-
theless, these analyses are unable to handle indirect call relations introduced by
frameworks. In such cases, applications invoke framework APIs, which, in turn,
call back into application methods, making it challenging for static analysis tech-
niques to accurately track and resolve these dynamic interactions.

Indirect call relations can be specified in various ways. In the example shown
in Figure 1a, the method Controller2.handle2() at line 20 is indirectly called
by chain.doFilter() at line 32 because it handles the URL /root2/path2
which matches with the URL /root2/* (line 7) in the XML configuration for
filter-mapping (Figure 1b).

Objective. The framework-introduced relations mentioned above are concrete
because they are tied to a particular application. Our objective is to automati-
cally abstract the general framework semantics (e.g., the annotations, @Control-
ler and @GetMapping, together specify an entry method relation), which referred
as specifications. Specifications can be leveraged by a static analysis tool to an-
alyze a wide range of applications that are built on similar frameworks with
different concrete configuration parameter values. Alternatively, we can manu-
ally produce specifications for frameworks, one by one. Nonetheless, such manual
work can be error-prone and labor-intensive.

3 Methodology

We present AutoWeb to automatically infer framework specifications, which
describe how relations are introduced by frameworks for given configurations.
The key idea of AutoWeb is to automatically identify the minimal sufficient
and necessary set (MSNS) for a relation by mutating configurations. In prac-
tice, AutoWeb takes a set of sample applications as inputs to infer the general
framework semantics and the generated specifications can be used when analyz-
ing other web applications.
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Fig. 3: Overview of AutoWeb. Black solid lines depict the workflow, while gray
dotted lines indicate a singular choice.

Figure 3 overviews AutoWeb. The input is a runnable web application, and
we partition it into two distinct logical modules: configurations and others in the
input application. The steps are shown below:

1. The input application is firstly instrumented and traced to acquire the initial
execution log using the original configurations. This step aims to observe the
concrete relations including entry points and call/points-to relations.

2. Mutated configurations are generated by removing or adding configuration
parameters from the original configurations. The MSNS for each relation can
be identified by comparing the dynamic relations of different mutations. The
application runs using mutated configurations in this step.

3. Concrete relations and configuration parameters are symbolized to generate
specifications that map each relation type to the configuration set.

Next, we will elaborate on each step using the example in Figure 1.

3.1 Observing Relations

This step aims to collect the concrete framework-introduced relations from the
initial execution information. In the Runtime Monitor component, we employed
Javaassist [6,7,8] to instrument the input application, modifying its Java byte-
code before class loading. To capture entry point and call relations, we insert
logging statements before and after each method call, as well as at the entry
and exit of each method. We log field read statements for points-to relations.
Additionally, the entry and exit of the request handling methods of web contain-
ers (e.g., Apache Tomcat [16]) are also logged to track coming requests. These
request sequences will later be used to interact with mutated applications.

As web applications handle multiple user requests concurrently, each log
statement includes its thread identifier. Relations including entry methods and
call/points-to relations can be easily deduced from execution logs within the
same thread, as follows:
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Ruleentry : Method m is an entry method if there is a log instance "[mtd] m"
immediately following "[Req]".
Rulecall : Method m is called directly or indirectly at call site c if there is a log
instance "[mtd] m" immediately following "[callsite] c".
Ruleptsto: Field f references to an object of type t if there is a log instance
"[fieldRead] f t".

Listing 1.1 shows the simplified execution logs of our motivating example.
The logs are grouped by thread id 28○ and 27○, triggered by the coming request
"/root1/path1" (line 1–11) and ends with the log instance "/root2/path2" (line
12–21), respectively.

1 28○[Req]/root1/path1
2 28○[mtd]Controller1.handle1(...)
3 ...
4 28○[fieldRead]Controller1.srv:ServiceImpl2
5 28○[callsite]line:11
6 28○[mtd]ServiceImpl2.service(...)
7 ...
8 28○[mtdEnd]ServiceImpl2.service(...)
9 28○[returnSite]line:11

10 28○[mtdEnd]Controller1.handle1(...)
11 28○[ReqEnd]/root1/path1
12 27○[Req]/root2/path2
13 27○[mtd]Filter1.doFilterInternal(...)
14 ...
15 27○[callsite]line:32
16 27○[mtd]Controller2.handle2(...)
17 ...
18 27○[mtdEnd]Controller2.handle2(...)
19 27○[returnSite]line:32
20 27○[mtdEnd]Filter1.doFilterInternal(...)
21 27○[ReqEnd]/root2/path2

Listing 1.1: Simplified runtime logs of the example in Figure 1.

The execution logs precisely capture all triggered relations. To focus solely
on the relations introduced by the framework, we exclude the relations that
can already be computed by existing static analyses. In Listing 1.1, line 2 and
line 13 confirm that Controller1.handle1 and Filter1.doFilterInternal
are entry methods (Ruleentry). Lines 15–16 suggest that Controller2.handle2
is indirectly invoked at line 32 of application code in Figure 1a by the invocation
doFilter (Rulecall). Line 4 states that field Controller1.srv refers to an object
of type ServiceImpl2 (Ruleptsto). Column 2 in Table 1 shows the set of concrete
relations.



Inferring Web Framework Semantics via Configuration Mutation 9

Table 1: Observed relations and corresponding configurations.
Relation Type Concrete Relation R Minimal Sufficient and Necessary Set S

Entry point entry : Controller1.handle1 {@Controller
∏
Controller1, @GetMapping

∏
handle1}

entry : Filter1.doFilterInternal {@filter
∏
Filter1,Filter1⊴ . . . , doFilterInternal⊴ . . . }

Points-to Controller1.srv:ServiceImpl2
{@Autowired

∏
srv, @Qualifier

∏
srv,

@Service
∏
ServiceImpl2 }

Call relation 32:Controller2.handle2
{API:doFilter, C32/m32 ⊴ . . . , @filter

∏
C32,

S
∏
{Controller2,handle2} }

3.2 Mutating Configurations

After step 1, we observed the set of dynamically triggered concrete relations.
Given a framework-introduced relation R, we try to identify the MSNS S for R,
i.e., the minimum set of configuration parameters triggering R. To this end, we
mutate configuration parameters based on the following guidelines.

Necessity: Configuration parameter C is a necessary condition of R, i.e., C ∈
S, if the resulting effect of removing C is that R is not triggered, while other
relations remain unaffected.
Sufficiency: The configuration set S is sufficient to trigger R, if a mutated
configuration set S ′ can trigger a correspondingly mutated relation R′.

Hence, our approach firstly identifies necessary conditions for relation R by
removing each configuration parameter one by one until R cannot be triggered.
Next, the set of necessary conditions is mutated to further verify whether it is
sufficient to trigger a correspondingly mutated relation R′.

In processing relation R, we only need to consider configurations related to
R, which is the set of Java annotations or XML attributes attached to related
program constructs of R. Hereafter, we use the notation S

∏
p to denote con-

figurations S on program construct p. Entry point relation entry : C.m involves
configurations S

∏
{C,m}, where C.m represents the entry method m inside

class C; points-to relation f : C relates to configurations S
∏
{f, C}, where f

and C are the field and its type respectively; and Call relation c : C.m, denoting
that method m inside class C is invoked at callsite c, involves configurations
S
∏
{c, Cc,mc, C,m}, where Cc and mc refer to the containing class and con-

taining method of callsite c, respectively. The types of configuration parameters
include Java annotations and XML configuration files. In addition, we also con-
sider extensions of framework APIs including sub-typing and method overriding
as special configurations, denoted by the notation ⊴.

Table 2: Mutation strategy.
original relation mutated relation
S
∏
{C,m} =⇒ entry : C.m S

∏
{C′,m′} =⇒ entry : C′.m′

S
∏
{f, C} =⇒ f : C S

∏
{f ′, C′} =⇒ f ′ : C′

S
∏
{c, Cc,mc, C,m} S

∏
{c′, Cc′ ,mc′ , C

′,m′}
=⇒ c : C.m =⇒ c′ : C′.m′

Table 2 presents the mutation strategy to verify sufficient conditions. In sum-
mary, original program constructs p related to relation R are duplicated and
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renamed to p′. Configurations S on p are moved to the mutated construct p′

instead. Each mutation action generates a mutated configuration set, which is
used to replace original configurations and then executed to verify whether a
correspondingly mutated relation R′ on p′ can be triggered or not.

Next, we elaborate on how the MSNS for distinct relations are identified
for our motivating example. The result for each observed relation is shown in
Column 3 of Table 1.

Entry point Relation. In Figure 1, Controller1.handle1 and Filter1.do-
FilterInternal are entry points. Let us consider the concrete relation entry :
Controller1.handle1. There are two related configuration parameters of this
method: @Controller

∏
Controller1 and @GetMapping

∏
handle1, and both pa-

rameters are necessary since the relation cannot be triggered if either of them is
removed. Furthermore, a new relation entry : Controller1’.handle1’ can be
triggered by applying our mutation strategy in Table 2. As a result, we have iden-
tified the MSNS {@Controller

∏
Controller1, @GetMapping

∏
handle1} for this

concrete relation. The entry method Filter1.doFilterInternal involves the
XML configuration on class Filter1 (filter

∏
Filter1) and two additional con-

figurations derived from API extension, sub-typing from OncePerRequestFilter
(denoted as Filter1⊴ . . . ) and overriding of method doFilterInternal (de-
noted as doFilterInternal⊴ . . . ), which form the MSNS for this relation.

Points-to Relation. We observe a points-to relation srv:ServiceImpl2 in our
motivating example. There are three related configuration parameters, which are
@Autowired

∏
srv, @Qualifier

∏
srv, and @Service

∏
ServiceImpl2. Removing

either annotation will disable the points-to relation. To mutate the set of config-
urations, we introduce a new class ServiceImpl2’ and a new field srv’, dupli-
cated from ServiceImpl and srv, respectively. Next, the set of configurations is
removed from the original program constructs and applied to the newly dupli-
cated field and class instead. In another word, the configuration set S

∏
{srv,

ServiceImpl2} is mutated to another set S
∏

{srv’, ServiceImpl2’}. The
mutated application will trigger the points-to relation srv’:ServiceImpl2’.
Hence, the three configuration parameters consist of the minimal sufficient and
necessary set for the points-to relation srv:ServiceImpl2.

Call Relation. Call relation preserves the semantics of indirectly invoking ap-
plication methods via framework API. That is, application invokes framework
APIs, which in turn, call back into application methods. For this, we con-
sider configuration parameters on the callsite (including its containing class and
method), as well as configuration parameters on the invoked method (includ-
ing its containing class). For concrete call relation 32:Controller2.handle2
in our example, the callsite (line 32 in Figure 1a) is constrained with the fol-
lowing configurations: line 32 invokes API doFilter (API:doFilter), m32 de-
rived from doFilterInternal (m32 ⊴ . . . ), C32 (class Filter1) derived from
OncePerRequestFilter (C32 ⊴ . . . ), and C32 configured as filter in XML
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(filter
∏

C32). These configurations, together with configurations on the in-
voking method (S

∏
{Controller2, handle2}) are the corresponding minimal

sufficient and necessary set.

Table 3: Inferred Specifications of the motivating example shown in Figure 1.
Relation type Relation R Specification (content for relation type)

Entry point entry : C.m
{@Controller

∏
C, @GetMapping

∏
m }

{@filter
∏

C, C ⊴ OncePerRequestFilter, m ⊴ doFilterInternal }
Points-to f : C {@Autowired

∏
f, @Qualifier(S1)

∏
f, @Service(S2)

∏
C, S1 ∼ S2}

Call relation c : C.m {API:doFilter, @filter
∏

Cc, C/m ⊴ . . . , @Controller
∏

C, @RequestMapping
∏

m }

3.3 Inferring Specifications

Until this point, we have obtained a set of relations with their corresponding
minimal sufficient and necessary sets. However, the relations and configurations
are concrete: they are tied to concrete program constructs and the value (if any)
of a configuration parameter is a constant string. In this step, we generalize the
relation R and its corresponding configurations to abstract program constructs,
according to the following rule.

Generalization: Concrete application program constructs (classes, methods,
and fields) are generalized to abstract program constructs. The constant string
parameters of a configuration are generalized to a symbolic string with con-
straints matching the string to the name of a program construct, or to the
parameter of another configuration. Symbolic strings with no matching con-
straints can be discarded.

Table 3 summarizes the specifications inferred from our example in Figure 1.
The specifications look similar to the minimal sufficient and necessary set for a
concrete relation, with concrete program constructs and constant configuration
parameters symbolized.

As shown in Table 3, we have inferred two rules for entry point relation. The
first rule states that the two configurations which are @Controller

∏
C and

@GetMapping
∏

m, collectively declare that C.m is an entry method, regardless
of their parameters. The second rule indicates that method C.m is an entry
method if C.m extends from OncePerRequestFilter.doFilterInternal and
C is configured as a filter by @filter

∏
C. Note that in this rule, we only gener-

alize application classes and methods while preserving concrete framework con-
structs. In the third rule, points-to relation f : C holds under the following condi-
tions: f is annotated with @Autowired and @Qualifier(S1), C is annotated with
@Service(S2), and the two symbolic string parameter S1 and S2 match with each
other (S1 ∼ S2). Here S1 and S2 are parameters of configuration @Qualifier and
@Service, respectively. The last rule indicates that if c invokes API doFilter
in a method derived from doFilterInternal (C/m ⊴ . . . ), it may indirectly
invoke C.m if C.m is a request handler (@Controller

∏
C, @RequestMapping∏

m) and Cc is a filter (@filter
∏

Cc) with parameter matching the name of
C (S ∼ C.name).
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Limitations. Points-to/Call relation connects a field/callsite to corresponding
class/methods. The connection between distinct program constructs are often
indicated by their configuration parameters, where the parameter may match
with another parameter or with the name of a program construct. For the points-
to relation srv:ServiceImpl2 in our example, the parameter of configuration
@Qualifer("service2") on field srv matches with the parameter of configura-
tion @Service("service2") on class ServiceImpl2.

However, it is often challenging to statically determine whether a parameter
matches another due to the flexibility provided by frameworks. Parameters can
be configured using options such as regular expressions or string manipulation
operations. For instance, the call relation 32:Controller2.handle2 happens
because the URL processed by the containing class of line 32 (class MyFilter)
matches with the URL handled by Controller2.handle2. However, the URL
processed by MyFilter is configured as a regular expression /root/*. Moreover,
we need to join parameters of the two configurations @RequestMapping(/root2)
and @RequestMapping(/path2) together to construct the full URL handled by
method Controller.handle2. It is rather challenging to recognize the above
intricate connection automatically, and our approach will discard the matching
constraints between the two URL parameters.

4 Evaluation

4.1 Experimental Setup

Implementation. We implemented a prototype that includes all the compo-
nents as depicted in Figure 3, and took the benchmarks as inputs to generate
framework specifications. Additionally, we applied the specifications inferred by
AutoWeb to JackEE, a web application analysis engine built on top of Doop [4]
for static program analysis.

Platform. The experiments for inferring framework specifications were con-
ducted on an Intel Core(TM) i5-4590 (3.3GHz) laptop equipped with 32 GB of
RAM, operating on the Windows 10 Professional version.

Benchmarks. We experimented AutoWeb on three popular web applica-
tion frameworks: Servlet [13], Spring(including Spring [25] and Spring-boot [24]),
and Apache Struts2 [15]. Our experimental benchmarks comprise two parts.

– A collection of 16 open-source web applications6, as listed in Table 4, was
curated from various open platforms and filtered based on the underlying
web frameworks, application categories (such as blogging systems and e-
shops), and their respective star ratings. This benchmark encompasses a
diverse array of applications, encompassing both popular and lesser-known
examples, as well as those with complex and straightforward architectures.

– A collection of 8 web applications from JackEE, which are suggested by
experts or top-popularity representatives of major classes of enterprise ap-
plications. One is free-binary-only, and the others are open-source.

6 https://gist.github.com/menghaining/38286f83c8b674fab771be66d5bf371f

https://gist.github.com/menghaining/38286f83c8b674fab771be66d5bf371f
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Table 4: Details of collected open-source benchmarks.
ID Benchmark Properties

Application
Classes

Total
Classes Stars Forks Frameworks

1 community 94 19544 2.3k 739 Servlet, Spring
2 halo 425 45359 22.1k 7.5k Servlet, Spring
3 iCloud 22 9498 183 115 Servlet, Spring, Struts2
4 jpetstore 24 6847 521 745 Servlet, Spring
5 logicaldoc 2013 51494 61 31 Servlet, Spring
6 LMS 33 14329 420 187 Servlet, Spring, Struts2
7 B2CWeb 41 17434 481 343 Servlet, Spring, Struts2
8 newbee-mall 89 13463 9.4k 2.5k Servlet, Spring
9 NewsSystem 66 20065 19 8 Servlet, Spring, Struts2
10 openkm 2968 88843 527 255 Servlet, Spring
11 RuoYi 290 38320 3k 1k Servlet, Spring
12 showcase 42 8937 5k 3.8k Servlet, Spring
13 petclinic 24 29092 395 1.8k Servlet, Spring
14 WebApp 75 28722 1.3k 610 Servlet, Spring
15 struts-examples 170 13507 405 543 Servlet, Struts2
16 Struts2-Vuln 20 4569 170 38 Servlet, Struts2

The rest of the figures and tables of this paper would use "ID" to represent each
benchmark instead of benchmark names.
Benchmarks struts-examples and Struts2-Vuln are two collections that contain
41 and 16 micro-benchmarks, respectively.

Our experiments aims to answer the following research questions:

RQ1 Can our approach automatically infer framework-introduced semantics of
web applications?

RQ2 How precise are the inferred specifications?
RQ3 How is the quality of generated specifications compared to manually written

ones?

4.2 RQ 1: Feasibility

AutoWeb. AutoWeb offers an automated and user-friendly solution that min-
imizes the need for manual setup throughout the workflow. Human involvement
is solely required during the initial phase, primarily to interact with the deployed
applications, which can be streamlined through using tools like [31]. Then, Au-
toWeb automates the following steps leveraging information directly derived
from the initial phase. Compared to human learning, which involves static anal-
ysis and framework knowledge, the cost is notably lower. Even though resources
like StackOverflow [10] and official documentation facilitate rapid initiation, they
often lack insights into the correlation between framework usage and static anal-
ysis semantics. Establishing these connections requires intricate, labor-intensive
manual intervention, making it a challenging and time-consuming endeavor.

The applications in Table 4 are used as the input of AutoWeb to generate
specifications. In Table 5, columns 2–5 detailed the runtime information of Au-
toWeb. The size of the execution log produced by each application using the
original configurations is outlined in column 2. Column 3 displays the number
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of mutated configuration sets generated by AutoWeb. Each mutation concerns
one configuration for one relation. Column 4 denotes the success rate of applica-
tion execution using these mutated configurations. Apart from benchmarks 2 and
5, all other benchmarks achieved success rates exceeding 75% during execution.
Even in benchmarks 2 and 5, a significant number of successful runs amounted
to 277 and 488, respectively. Column 5 presents the recall (TP/(TP + FN)),
demonstrating that all benchmarks, except benchmark 9 (to be discussed in 4.3),
achieved recall rates surpassing 90%. The extensibility of AutoWeb lies in two
aspects, namely new frameworks and new relation types. New frameworks are
already supported by AutoWeb (discussed shortly), while certain components
need to be enhanced to support new relation types.

Table 5: Detailed results of inferred specifications and runtime information.
ID Instrument Mutation Inferring Configurations Entry Inject Call

Log
Size(M)

Testcase
Number

Trigger
Success% Recall% All Reach. Spec. FN FP FN FP FN FP

1 47.6 167 86.75% 90.00% 19 15 9 1 0 0 0 0 0
2 12.5 398 69.41% 94.44% 80 60 17 0 0 0 0 1 0
3 0.5 242 96.61% 100.00% 6 6 4 0 0 0 0 0 0
4 36.6 104 98.08% 100.00% 6 6 2 0 0 0 0 0 0
5 122 780 62.50% 100.00% 18 9 9 0 0 0 0 0 0
6 0.5 213 84.13% 100.00% 8 7 6 0 0 0 0 0 0
7 0.8 155 82.96% 100.00% 7 4 4 0 0 0 0 0 0
8 172 117 76.92% 100.00% 19 14 8 0 0 0 0 0 0
9 158 93 76.92% 60.00% 9 9 3 0 0 0 0 2 0
10 207 421 98.05% 100.00% 67 30 5 0 0 0 0 0 0
11 2.79 310 75.28% 92.31% 59 27 12 0 0 1 0 0 0
12 1.4 695 78.71% 100.00% 29 28 12 0 0 0 0 0 0
13 1.75 337 75.00% 100.00% 33 31 10 0 0 0 0 0 0
14 1.56 290 80.07% 100.00% 34 19 7 0 0 0 0 0 0
15 11.2 1022 98.33% 100.00% 29 16 8 0 0 0 0 0 0
16 0.3 176 99.43% 100.00% 3 3 2 0 0 0 0 0 0

Columns 2–5 show the details of runtime information. Columns 6–8 show the configuration
numbers. Columns 9–14 show the accuracy of inferred specifications.
Reach. denotes reachable configurations at runtime.
Spec. denotes specifications inferred by AutoWeb (Section 3.3)

Specification. The benchmarks encompass a total of 152 configuration parame-
ters: 60 for classes, 39 for methods, and 53 for fields. Among these configuration
parameters, 121 are specific to the three frameworks under manual investigation,
while the remaining parameters are associated with other frameworks utilized
within the applications, such as Stripes [17]. Additional details regarding the
count of distinct configuration parameters in each benchmark can be found in
columns 6–8 of Table 5.

The specifications derived from the 16 benchmarks encompass 96 entry point
types, 9 points-to types, and 17 indirect call types. These specifications involve
configuration parameters for 17 classes, 20 methods, 10 fields, as well as 46
additional sub-types within the framework API. To enhance understanding and
application of these specifications, we provide an excerpt of inferred entry point
relations. Both points-to and call relations exhibit similarities.
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Table 6 displays a snip of the results regarding entry point types in the in-
ferred specifications. Each row indicates when a method and its associated class
satisfy the specified configuration parameters, the method can be considered as
an entry point, and the class becomes the entry class. EP 1, 3, and 6 correspond
to annotation configurations, while EP 2, 4, and 5 are associated with XML
configurations. In the case of EP6, the method also needs to override the desig-
nated method. The results shown are divided by frameworks: EP 1–2, EP 3–4,
EP 5, and EP 6 belong to frameworks Spring, Struts2, Servlet, and Strips [17],
respectively. It is worth noting that initially, we did not consider Strips but Au-
toWeb still inferred the corresponding specification (EP 6), thereby validating
our approach’s potential for generalization to other novel frameworks.

Table 6: Part of inferred entry-point (EP) specifications.
Line Class Method
EP1 @RestController @PostMapping
EP2 beans->bean[class] beans->bean[destroy-method]
EP3 - @Action
EP4 struts->package->action[class] struts->package->action[method]
EP5 web-app->filter->filter-class Filter.doFilter(...)
EP6 - @DefaultHandler

The “-" symbol represents any configuration.

Since specifications are generalized and not specific to any application, they
can be utilized by existing static analyzers to analyze any web application built
on the frameworks outlined in the specifications. After that, static analyzers can
understand framework semantics to facilitate various analyses, such as call graph
construction [18], and information analysis [3].

Conclusion. To sum up, our proposed technique is feasible in practice:
AutoWeb can automatically generate precise framework specifications, sav-
ing heavy human effort. Moreover, AutoWeb is readily applicable to other
frameworks (e.g., Stripes) and relation types, confirming the generality of our
approach.

4.3 RQ 2: Specification Accuracy

The specifications generated by AutoWeb should exhibit minimal or zero false
positives to prevent any adverse impacts for later direct use. To this end, we man-
ually verify the accuracy of all inferred specifications by examining the source
code, with a summary of the results provided in columns 9–14 of Table 5. During
the verification process, we focus on the following two issues:

– False Positives. Are there any incorrectly inferred relations that contradict
framework semantics?

– False Negatives. Are there any correct relations that were not inferred but
were observed during runtime?

False Positives Table 5 (columns 10, 12, 14) reveals no false positives in any of
the benchmarks. This is due to the specifications being inferred from runtime
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information, which is subsequently verified by the actual execution of the ap-
plication. As a result, AutoWeb effectively avoids false positives, ensuring the
correctness of the framework semantics introduced in the static analysis.

False Negatives There are only five false negatives for all benchmarks. These
false negatives are hidden behind certain factors during runtime, preventing
them from being apparent. One factor is embedding the configuration content
directly in the code, rendering the configuration on the code(annotations or XML
files) ineffective. For example, in the community project, removing the param-
eter @RequestMapping does not take effect at runtime because the application
has a default response function that produces the same result as the configura-
tion parameter. Another factor is the language feature. For example, in RuoYi,
the false negative for the field-inject relation is related to the @Value annota-
tion. This occurs because all fields annotated with this configuration are Java
primitive types, which always have default values. Moreover, complex string
configurations lead to false negatives. In the NewsSystem, a false negative is
caused by intricate string manipulation. Specifically, the configuration <action
name="AdminAction_*" method="1"> utilizes the implicit configuration value
"{1}" to represent the method name, relying on the incoming URLs. Another
false negative arises from multi-layer references in XML attributes, which are
not yet supported.

Note that false negatives in one application may appear as true positives in
other applications. For instance, the Entry-point relation @RequestMapping is
FN in community appears as true positive in newbee-mall. More input projects
would bring more complete specifications, which will be discussed in 4.4. The
average false negative rate summarized from all inferred specifications is 8.2%.

Conclusion. Upon analysis, we identified that the false negatives in our
inferred specifications were a consequence of configurations outside the scope of
our analysis. Importantly, the inferred specifications exhibit no false positives,
indicating their direct applicability as framework knowledge for existing static
analysis tools.

4.4 RQ 3: Comparison with Existing Work

The state-of-the-art tool, JackEE [1], offers open-source specifications across
various web frameworks. JackEE is built on top of Doop [4], which is a collec-
tion of various analyses expressed in the form of Datalog [23] rules, and all the
framework specifications are written in Datalog rules. To assess the efficacy of
the specifications generated by AutoWeb, we transformed them into Datalog
rules, replacing all the configuration specifications in JackEE. With JackEE’s
specifications serving as the baseline, we evaluated the specifications produced
by AutoWeb alongside the default specifications from Doop.

Comparison Dimension. Framework knowledge helps static analyses to better
understand the application behaviors. To evaluate the quality of specifications,
we focus on reachable application methods and call graph edges (same metrics
used in JackEE).
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(b) Call graph edges against JackEE.

Fig. 4: Reachability for different metrics.

Comparison Method. We adopt JackEE (with its manual specifications) as the
baseline for comparison, evaluating the efficacy of JackEE, Doop, and Au-
toWeb. We considered the 8 benchmarks from JackEE (mentioned in 4.1) for
evaluation. Among these benchmarks, one benchmark entails a prolonged setup
duration, two encounter deployment problems, and one is not open-sourced. As
a result, we use 4 benchmarks to enrich the specifications generated by Au-
toWeb. Hence, we have two sets of specifications: (1) AutoWeb16 contains
the specifications generated using 16 benchmarks in Table 4. (2) AutoWeb20

denotes the enriched specifications using 20 (16 + 4) benchmarks.

Result. Figure 4a and Figure 4b compare Doop, AutoWeb16, and AutoWeb20

against JackEE on reachable (application) methods and call graph edges, re-
spectively. When comparing AutoWeb16 with JackEE, the average ratio on
reachable application methods is 91.85%, while for call graph edges, the av-
erage is 94.27%. In some cases, AutoWeb16 even outperformed JackEE like
alfresco and WebGoat. When comparing AutoWeb20 with JackEE, the ratios
range from 83.14% to 121.73% on reachable methods, averaging 96.59%; For call
graph edges, the numbers vary from 89.18% to 111.48%, averaging 98.09%. On
the other hand, AutoWeb20 exhibited improvements over AutoWeb16, par-
ticularly in benchmarks such as shopizer and SpringBlog, where previously
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missing configurations, absent in the initial 16 benchmarks, were later inferred.
This underscores that using a more extensive set of inputs can lead to richer
specifications, as discussed in section 4.3. Furthermore, our specifications include
correct configuration parameters that may have been overlooked manually. For
example, we identified annotations like @PostMapping and @ExceptionHandler
as entry-point relations, while JackEE did not recognize them. This highlights
the presence of unsystematic and incomplete issues of manually configured spec-
ifications.

Conclusion. Concerning the quality of constructed call graphs, the specifi-
cations inferred by AutoWeb are comparable with those manual ones in Jac-
kEE. Furthermore, our approach excels at identifying overlooked configuration
parameters during manual writing.

5 Related Work

The related work encompasses two main areas: modeling framework behaviors,
and automatic summarizing of program semantics.

Modeling Framework Behaviors. As mentioned in section 1, previous works mod-
ified each analysis engine with human knowledge on-demand, which suffers from
limited reusability. Some studies attempted to develop reusable models for spe-
cific frameworks to address this limitation, which still rely on human knowledge.
ANTaint [30] needs manually modeled core features of Spring like bean injec-
tion and AOP. The Oracle team [12] manually wrote rules to identify entry
points only for Java EE Servlet applications. GenCG [19,20], F4F [26,28], and
JackEE [1] all need human effort to obtain knowledge of the framework and
static analysis. Static Analysis Refining Language (SARL) [14] can also obtain
framework-introduced relations via iterative software analysis. However, the an-
alyzer also needs to point out and add the missing framework knowledge. Unlike
AutoWeb, all these approaches rely on the knowledge of frameworks and static
analysis, and require extra manual effort for new frameworks.

Automatic Summarizing Program Semantics. Research on exploiting automatic
approaches to summarizing framework library specifications used in static anal-
ysis [22,9,2] became more popular. These approaches mined information flow
specifications with additional running information over libraries, rather than
writing them by hand. However, the purpose of these approaches is to summa-
rize the framework library APIs’ semantics, especially for Android, not to deal
with complex but frequently used configurations (e.g., XML files). Therefore,
these approaches do not apply to web applications that mostly use non-code
configurations.

6 Conclusion

Web applications heavily rely on web frameworks, making it imperative to pre-
cisely model framework semantics for static analysis. In this paper, we pro-
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posed the first automated method to produce specifications that represent gen-
eral framework semantics. To that end, we identify the minimal necessary and
sufficient set for a framework-related relation by mutating configurations. Ex-
perimental results on three mainstream Java frameworks demonstrate that our
technique is comparable to existing state-of-the-art manual approaches, obtain-
ing a marginal 8.2% false negatives with no false positives.
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