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we propose a new field-sensitive technique that reinterprets the generation of access paths as a Context-
Free Language (CFL) for field-sensitivity and formulates it as an IDE problem. This approach significantly
reduces the number of data-flow facts generated and handled during the analysis, which is a major factor in
performance degradation.

To demonstrate the effectiveness of this approach, we developed a taint analysis tool, IDEDroid, in the
IFDS/IDE framework. IDEDroid outperforms FlowDroid, an established IFDS-based taint analysis tool, in
the analysis of 24 major Android apps while improving its precision (guaranteed theoretically). The speed
improvement ranges from 2.1× to 2, 368.4×, averaging at 222.0×, with precision gains reaching up to 20.0% (in
terms of false positives reduced). This performance indicates that IDEDroid is substantially more effective in
detecting information-flow leaks, making it a potentially superior tool for mobile app vetting in the market.
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1 Introduction

The IFDS framework, initially proposed by Reps et al. [Reps et al. 1995], offers a precise solution
for Inter-procedural Finite Distributive Subset (IFDS) data-flow problems. It extends a program’s
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inter-procedural control flow graph (ICFG) into an exploded graph, with nodes at each program
point representing a set of data-flow facts (𝐷), and edges representing data-flow transfer functions
from 2𝐷 to 2𝐷 . This allows for context- and flow-sensitive inter-procedural data-flow analysis by
identifying inter-procedurally realizable paths in the exploded graph. The IFDS algorithm’s time
complexity is 𝑂 ( |𝐸 | |𝐷 |3) and space complexity is 𝑂 ( |𝐸 | |𝐷 |2), with |𝐸 | being the ICFG’s edge count.
This framework has been integrated into several analysis tools like Soot [Lam et al. 2011],

WALA [IBM 2006], and LLVM [Lattner and Adve 2004], and is used in diverse applications including
pointer analysis [Späth et al. 2017; Späth et al. 2016], taint analysis [Arzt et al. 2014; He et al. 2019;
Li et al. 2024, 2021; Tripp et al. 2009; Wei et al. 2014], security analysis [Hallem et al. 2002; Manevich
et al. 2004; Wassermann and Su 2008], and shape analysis [Gotsman et al. 2006].

Many IFDS problems are alias-aware, requiring the simultaneous management of data-flow prop-
agation and aliasing to accurately track data flow through the heap, thus achieving high precision.
The original IFDS framework proposed by Reps et al. [1995] does not inherently address aliasing;
it relies on an independent pointer analysis [Andersen 1994] to precompute alias information. In
order for the analysis results to be precise, it is crucial to use a pointer analysis algorithm that is
both fully context- and flow-sensitive. However, achieving this level of sensitivity is still considered
overly costly for object-oriented programs [Späth et al. 2016].

In practice, alias discovery within the IFDS framework often involves integrating an on-demand
computation of access paths [Arzt et al. 2014; He et al. 2019; Späth et al. 2017]. These access paths,
abstracted for field-sensitivity, are denoted as 𝑣 .𝑓 ∗, where 𝑣 represents a base variable and 𝑓 ∗ a
sequence of zero or more fields. They are computed as needed and explicitly encoded as data-flow
facts to effectively capture tainted aliases. For example, FlowDroid, a prominent IFDS-based
taint analysis tool [Arzt et al. 2014], utilizes a forward IFDS solver to propagate tainted access
paths, i.e., data-flow facts along control flow. Furthermore, FlowDroid uses a backward solver to
compute aliases for newly found tainted access paths or facts at store operations. This approach of
using access paths for field-sensitivity enables FlowDroid to perform context- and flow-sensitive
analysis, thereby enhancing its analysis precision.
FlowDroid’s access-path-based approach, while effective for field-sensitivity, significantly

increases the number of data-flow facts and expands the data-flow fact domain 𝐷 , causing consid-
erable performance overhead. With 5-limited access paths (default in FlowDroid), the number
of access paths can be almost an order of magnitude larger than the number of base variables for
some programs (Figure 10). Given that the IFDS algorithm [Naeem et al. 2010] scales with cubic
time and quadratic space complexity relative to |𝐷 |, this surge in access paths can severely slow
down IFDS-based analysis, making it both compute- and memory-intensive. This limitation, also
highlighted in prior studies [Avdiienko et al. 2015; He et al. 2023], limits FlowDroid’s scalability,
often leading to time-outs and out-of-memory errors in analyzing large Android apps.

An effective strategy for optimizing performance in IFDS problems is to minimize the size of the
data-flow fact domain 𝐷 . One simple approach is to apply 𝑘-limiting to access paths, using small
values (e.g., 1 or 2) for 𝑘 . While this can reduce 𝐷 , it often leads to a significant loss in precision.
Additionally, shorter access paths can generate an excessive number of spurious aliases, potentially
decreasing the overall performance of IFDS-based analysis. This presents a critical challenge: How
can we optimize the domain size of 𝐷 without compromising precision? This question underscores
the need for a balance between efficiency and precision in IFDS problem-solving.

To tackle the challenge of optimizing alias-aware IFDS-based analysis, we propose a new approach
that enhances scalability and precision by propagating only the base variables of access paths,
thereby effectively reducing the domain size |𝐷 |. The key novelty lies in treating the generation of
access paths as a CFL (Context-Free Language) for field-sensitivity and formulating it as an IDE
(Inter-procedural Distributive Environment) problem. Our approach symbolically models 𝑘-limited
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access paths as edge functions in an IFDS/IDE framework, an extension of IFDS with environment
transformers [Sagiv et al. 1996]. Field accesses are encoded as edge labels on the program’s exploded
graph, where only base variables are propagated, and access paths are determined by solving a
CFL-reachability problem [Reps 1998; Yannakakis 1990] on strings representing the sequence of
accessed fields. Our approach prevents redundant propagation of access paths with identical base
variables markedly enhancing analysis performance. Furthermore, we also show this CFL-based
approach can enhance the precision beyond that of the traditional access-path-based approach.

To validate our approach, we have integrated it into Heros [Bodden 2012], an IFDS/IDE frame-
work, and developed a new taint analysis tool, named IDEDroid. This tool is designed for detecting
information-flow leaks in Android apps, a principal application of the IFDS/IDE framework. Our
experimental results demonstrate that IDEDroid not only significantly boosts the efficiency of
FlowDroid but also enhances its precision for certain apps. Our main contributions include:

• We present a new approach for alias-aware IFDS analysis, instantiated for taint analysis, by
modeling field accesses as edge functions in the IDE framework. This IDE-based analysis
significantly enhances both the efficiency and precision of existing IFDS-based analysis.

• We develop a new taint analysis tool (soon-to-be released), namely IDEDroid, built on top of
Heros, an IFDS/IDE framework [Bodden 2012].

• We evaluate IDEDroid, equipped with our new CFL-based approach for field-sensitivity,
against FlowDroid, which uses Boomerang, a conventional access-path-based approach
for field-sensitivity. The evaluation includes 24 major Android apps, with 14 from Foss-
Droid [FossDroid 2023] and 10 from Drebin [Arp et al. 2014; Spreitzenbarth et al. 2013].
IDEDroid achieves an average speedup of 222.0× over FlowDroid, while also reducing
average memory usage by 3.6×. Additionally, IDEDroid proves to be more precise than
FlowDroid in practice, lowering false positive rates by up to 20.0% in certain apps.

The rest of the paper is organized as follows. Section 2 provides the necessary background
on IFDS/IDE. Section 3 motivates our approach with an example. Section 4 formalizes our ap-
proach. Section 5 presents and analyzes the experimental results from evaluating IDEDroid against
FlowDroid. Section 6 reviews the related work. Finally, Section 7 concludes this paper.

2 Background

The classic IFDS/IDE framework [Sagiv et al. 1996] is a cornerstone in the field of inter-procedural
data-flow analysis. IFDS [Reps 1998] frames inter-procedural finite distributive subset data-flow
problems as graph-reachability problems. IDE, a generalization of IFDS, is designed to handle
inter-procedural distributive environment problems, where data-flow facts are conceptualized as
mappings (or environments) from a finite set of symbols to a potentially infinite set of values.

2.1 The IFDS Framework

An IFDS problem 𝐼𝑃 is defined as a five-tuple 𝐼𝑃 = (𝐺∗, 𝐷, 𝐹, 𝑀,⊓) [Reps 1998]. 𝐺∗ = (𝑁 ∗, 𝐸∗)
represents the supergraph, or the inter-procedural control flow graph (ICFG) of the program. The
domain 𝐷 denotes a finite set of data-flow facts. 𝐹 , a subset of 2𝐷 −→ 2𝐷 , comprises a set of flow
functions that are distributive over the meet operator ⊓ (either the set union or intersection). Finally,
𝑀 is a mapping from the edges in 𝐸∗ to their corresponding flow functions in 𝐹 .

The supergraph𝐺∗ in an IFDS problem comprises a set of control flow graphs (CFGs), {𝐺0,𝐺1, ...},
each representing a different method in the program. In each CFG𝐺𝑝 , there is a unique entry node
𝑠𝑝 and a unique exit node 𝑒𝑝 . Callsites are depicted with two nodes: a call node 𝑐𝑖 and a return node
𝑟𝑖 . There are four types of edges in 𝐺∗: normal edges representing standard intra-procedural edges;
call edges connecting 𝑐𝑖 to 𝑠𝑝 to denote inter-procedural control flow from callsite 𝑖 to callee 𝑝;
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Fig. 1. Flow functions of IFDS-based taint analysis.

return edges linking 𝑒𝑝 to 𝑟𝑖 for the control flow from callee 𝑝 back to callsite 𝑖; and call-to-return

edges from 𝑐𝑖 to 𝑟𝑖 , which convey intra-procedural flow across the callsite that is not part of the call.
The IFDS framework’s fundamental concept is transforming an IFDS problem into a graph

reachability problem over an exploded graph𝐺# = (𝑁 #, 𝐸#). This graph, derived from𝐺∗, is defined
with 𝑁 # = 𝑁 ∗ × (𝐷 ∪ {0}) and 𝐸# as {⟨𝑚,𝑑1⟩ → ⟨𝑛,𝑑2⟩ |𝑚 → 𝑛 ∈ 𝐸∗, 𝑑2 ∈ 𝑀 (𝑚,𝑛) ({𝑑1})}. Here, 0
represents an empty fact, enabling the creation of new data-flow facts.𝑀 (𝑚,𝑛) is the flow function
for edge (𝑚,𝑛) in 𝐺#, crucial for data-flow fact propagation.
Figure 1 presents the flow functions in IFDS-based taint analysis for four types of statements,

focusing on the transformation of tainted access paths (𝐷). It details how each statement’s incom-
ing tainted paths are modified by its specific flow function, thus influencing the data-flow facts
immediately subsequent to the statement. In a store statement like b.f = a, c.f becomes tainted
as well if b.f and c.f are aliases. Conversely, b.f is untainted following b.f = sanitize(), with
sanitize() indicating a right-hand side that removes taint from b.f (if any). This setup illustrates
the effect of different statements on the propagation of taint in IFDS-based analysis.

In practical applications, the tabulation algorithm, detailed in [Naeem et al. 2010], is commonly
employed for solving IFDS problems. This algorithm operates iteratively, computing path edges
until it stabilizes at a fixed point. Within the IFDS terminology, a path edge ⟨𝑠𝑝 , 𝑑1⟩ → ⟨𝑛,𝑑2⟩
indicates a same-level realizable path from ⟨𝑠𝑝 , 𝑑1⟩ to ⟨𝑛,𝑑2⟩, where 𝑠𝑝 is the start node of method
𝑝 containing node 𝑛. This means that if data-flow fact 𝑑1 is valid at 𝑠𝑝 , then 𝑑2 will be valid at
𝑛. Path edges are generated as needed. For example, a path edge ⟨𝑠𝑝 , 𝑑1⟩ → ⟨𝑛,𝑑2⟩ is established
only if ⟨𝑠𝑝 , 𝑑1⟩ can be reached from 𝑠main in the main method main(). As a result, the path edge
⟨𝑠𝑝 , 𝑑1⟩ → ⟨𝑛,𝑑2⟩ represents the latter part of a realizable path from ⟨𝑠main, 0⟩ to ⟨𝑛,𝑑2⟩, signifying
the propagation of a data-flow fact from the program’s entry point to 𝑛.

2.2 The IDE Framework

IDE [Sagiv et al. 1996] extends the IFDS framework by allowing the data-flow fact domain to
contain environments 𝑒𝑛𝑣 (𝐷, 𝐿), where 𝐷 is a finite set of symbols, and 𝐿 is a finite-height meet
lattice. This enhancement enables IDE to not only determine the reachability of a data-flow fact
𝑑 ∈ 𝐷 at a program point, as in IFDS, but also to compute the corresponding value 𝑣 ∈ 𝐿 that 𝑑
maps to. As a result, IDE is a more general framework than IFDS. In fact, IFDS can be viewed as a
specific instance of IDE, where 𝐿 is a binary domain {⊤,⊥}, representing the binary state of a fact
𝑑 (e.g., whether it is tainted or not during the IFDS-based analysis) at a program point.

IDE, similar to IFDS, tracks data flow in the exploded supergraph𝐺#. Each edge in𝐺# is associated
with an edge function that defines an environment transformer. This transformer maps an input
environment 𝑒𝑛𝑣 (𝐷, 𝐿) to an output environment 𝑒𝑛𝑣 (𝐷, 𝐿), with all transformers being distributive
over the meet operator to handle various environment interactions and transformations.
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The IDE algorithm operates in two stages, Phase I and Phase II. In Phase I, it calculates same-level
realizable paths for each node ⟨𝑛,𝑑⟩, which are paths from the entry node of 𝑛’s method to ⟨𝑛,𝑑⟩.
This phase also includes summarizing the effects of these paths into a jump function by combining
the edge functions along the path. Phase II then determines the actual values associated with
the nodes in the exploded supergraph. Most of the computational effort in the IDE algorithm is
attributed to Phase I, as previously noted in [Naeem et al. 2010] and supported by our experiments.
For further details on the IDE algorithm, see [Naeem et al. 2010; Sagiv et al. 1996].

2.3 CFL Reachability

CFL-reachability, as introduced by Reps [1998], establishes a critical framework for formulating
a broad spectrum of program analysis problems. This framework identifies a CFL-reachability
problem through a context-free language 𝐿 delineated over an edge-labeled graph 𝐺 . Two nodes in
𝐺 are deemed CFL-reachable if there exists a path 𝑝 connecting them, such that the concatenation
of the edge labels along 𝑝 forms a word in 𝐿. This mechanism is extensively applied in pointer
analysis to ensure field sensitivity [Lu and Xue 2019; Sridharan et al. 2005; Xu et al. 2009; Zheng
and Rugina 2008]. By matching field load and store operations, CFL-reachability paths can precisely
delineate data flows across mutable heap structures. Nonetheless, existing CFL-based pointer
analyses primarily lack flow sensitivity, which compromises their ability to effectively model field
kill operations at store statements, essential for representing strong updates on heap data.

3 Motivation

We use taint analysis to motivate our research. Section 3.1 gives a simple program. In Section 3.2,
we examine FlowDroid [Arzt et al. 2014], highlighting its access-path-based approach to alias
discovery in its IFDS-based taint analysis. In Section 3.3, we introduce our CFL-based approach,
offering a more efficient and accurate alternative for alias detection in an IDE-based taint analysis.

3.1 A Simple Example

In Figure 2, the main() method taints variable s through source() (line 2), which is then stored
into a.f, a.g, and a.h (lines 3-5). In the then branch (lines 7-9), a and b are passed to bar()’s
parameters p and q. Inside bar(), p.f is assigned to q.f indirectly (lines 17-18), causing b.f =
a.f and leading to a leak at line 9. Conversely, in the else branch (lines 11-13), calling kill() (line
11) sanitizes a.f (line 21), preventing a leak at line 13. This example is streamlined by excluding
inessential elements, such as declaration and object allocation statements.

3.2 FlowDroid: IFDS-based Taint Analysis with Access Paths for Field-Sensitivity

In FlowDroid, the data-flow fact domain 𝐷 encompasses tainted access paths 𝑣 .𝑓 ∗. Figure 2(a)
gives the exploded supergraph 𝐺# = (𝑁 #, 𝐸#), where a node represents an access path 𝑑 ∈ 𝐷 at
a program point, and an edge ⟨𝑛1, 𝑑1⟩ → ⟨𝑛2, 𝑑2⟩ indicates that 𝑑2 at 𝑛2 (i.e., the program point
just before line 𝑛2) is tainted by 𝑑1 at 𝑛1 (i.e., the program point just before line 𝑛1). For instance,
a.f = s at line 3 generates the edge ⟨3, s⟩ → ⟨4, a.f⟩. 𝐺# is built on the fly, with nodes and edges
introduced as needed. FlowDroid utilizes a forward solver, propagating tainted access paths until
a fixed point. Leak detection hinges on tracing a realizable path to the point of interest. For example,
a realizable path from ⟨smain, 0⟩ to ⟨9, x⟩, ⟨smain, 0⟩ → ⟨2, 0⟩ → ⟨3, s⟩ → ⟨4, a.f⟩ → ⟨7, a.f⟩ →
⟨17, p.f⟩ → ⟨18, v⟩ → ⟨19, q.f⟩ → ⟨8, b.f⟩ → ⟨9, x⟩ signals a leak at line 9.
FlowDroid offers two demand-driven approaches for identifying tainted field value aliases at

store statements, such as q.f = v at line 18. Its default option leverages a backward solver to navigate
reverse control flow, detecting aliases (e.g., b.f as an alias of q.f) and injecting them into Flow-
Droid’s forward solver to aid in leak detection, as seen at line 9. Alternatively, Boomerang [Späth
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1 void main() {

2    s = source();
3    a.f = s;
4    a.g = s;
5    a.h = s;
6    if (...) {
7       bar(a, b);
8       x = b.f;
9       sink(x); // leak
10   } else {
11      kill(a);
12      y = a.f;
13      sink(y); // no leak
14   }
15}

16 void bar(p, q) {
17     v = p.f;
18     q.f = v;
19 }

20 void kill(k) {
21     k.f = sanitize();
22}

Normal Flow(forward)
Call Flow
Call To Return Flow
Return Flow

0     s    a.f   a.g   a.h   b.f   x   y

0    p.f   p.g   p.h    v    q.f

0    k.f   k.g   k.h

(a) FlowDroid: IFDS-based Taint Analysis

16 void bar(p, q) {
17     v = p.f;
18     q.f = v;
19 }

20 void kill(k) {
21     k.f = sanitize();
22}

Normal Flow(forward)
Call Flow
Call To Return Flow
Return Flow

0     s     a                      b   x   y

0      p                    v     q

0     k   

1 void main() {

2    s = source();
3    a.f = s;
4    a.g = s;
5    a.h = s;
6    if (...) {
7       bar(a, b);
8       x = b.f;
9       sink(x); // leak
10   } else {
11      kill(a);
12      y = a.f;
13      sink(y); // no leak
14   }
15}

̃

(b) IDEDroid: IDE-based Taint Analysis

Fig. 2. Comparing IDEDroid and FlowDroid for performing taint analysis.

et al. 2016] adopts a bi-directional IFDS analysis at store statements to uncover aliased paths like
{b.f}, which are then processed by FlowDroid’s forward solver for forward propagation. Both
strategies offer equivalent precision in analysis with minor differences in performance. The alias
identification mechanism, not central to this work, is omitted from Figure 2 for clarity.
We have identified three critical limitations in FlowDroid that significantly affect its perfor-

mance, especially when utilizing the access-path-based approach for achieving field-sensitivity:
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• Large Data-Flow Fact Domain. In FlowDroid, access paths, such as a.f, a.g, and a.h
in Figure 2(a), are encoded as data-flow facts in the exploded graph 𝐺#, at every program
point. Maintaining access paths explicitly for field-sensitivity causes a combinatorial growth
in data-flow facts, substantially expanding 𝐷 . For some programs, the number of maintained
access paths can be an order of magnitude larger than the base variables (Figure 10).

• Redundant Taint Propagation. In FlowDroid, many tainted access paths are propagated
unnecessarily, notably affecting performance. For example, during the call to bar(a,b) (line
7), the three tainted paths a.f, a.g, and a.h are propagated to bar(), resulting in p.f, p.g,
and p.h being further propagated within this callee. However, propagating a.g and a.h into
bar() is redundant as they are not accessed in the callee. This unavoidable over-propagation,
due to a lack of early insight, leads to performance degradation.

• Redundant Alias Query. In FlowDroid, an alias query is initiated when a field store
is tainted. For instance, in our example, if line 18 is modified to q.f = p, and since p.f,
p.g, and p.h are tainted, then three alias queries for q.f.f, q.f.g, and q.f.h with the
same base variable q are triggered at this store statement. While Boomerang attempts to
minimize redundant alias queries through caching, this approach demands additional data
structures. Moreover, cached results are susceptible to being flushed by other unrelated
queries, potentially limiting the effectiveness of this caching strategy.

3.3 IDEDroid: IDE-based Taint Analysis with CFL-based Environment Transformers

To overcome the three limitations in FlowDroid’s field-sensitive approach, we bypass generating
explicit access paths, reframing it as a CFL-reachability problem in the IDE framework. Our approach
symbolically encodes access paths as edge functions or environment transformers. Rather than
computing tainted access paths at each edge, its transformer maps a base variable 𝑣 ∈ 𝐷 to the set
of its field access sequences in 𝑙 ∈ 𝐿, where 𝑣 .𝑓 ∗ (with 𝑓 ∗ ∈ 𝑙 ) is an access path on the base variable
𝑣 . Here, 𝐿 is a finite-height lattice of field access sequences, using set union as the meet operator.

Figure 2(b) illustrates IDEDroid, a novel IDE-based taint analysis, which adopts a CFL-based
strategy for field-sensitivity. Unlike FlowDroid, IDEDroid only considers base variables such as a,
p, q, and k as data-flow facts (nodes) in the exploded graph 𝐺#. These variables’ access paths are
computed using environment transformers by solving a CFL-reachability problem pertaining to
their field access sequences. The basic idea behind our CFL-based approach is explained below.

In our approach, we categorize field accesses 𝑓 into three types: 𝑓 for field store, 𝑓 for field load,

and 𝑓 for field sanitization. For instance, in Figure 2(b), an edge like s f−→ a represents a field store
(a.f = s at line 3), while b f−→ x indicates a field load (x = b.f at line 8). Additionally, an edge like

k
f̃−→ k signifies the sanitization or killing of the access path k.f (k.f = sanitize() at line 21).

The path ⟨smain, 0⟩ → ⟨2, 0⟩ → ⟨3, s⟩ f−→ ⟨4, a⟩ → ⟨7, a⟩ → ⟨17, p⟩ f−→ ⟨18, v⟩ f−→ ⟨19, q⟩ →
⟨8, b⟩ f−→ ⟨9, x⟩ is CFL-reachable in IDEDroid, resulting in a leak detection at line 9 as the sequence
of edge labels ffff appears in our CFL. However, the path ⟨smain, 0⟩ → ⟨2, 0⟩ → ⟨4, s⟩ g−→ ⟨5, a⟩ →

⟨7, a⟩ → ⟨17, p⟩ f−→ ⟨18, v⟩ f−→ ⟨19, q⟩ → ⟨8, b⟩ f−→ ⟨9, x⟩ is not CFL-reachable, as the sequence gfff

does not conform to our CFL requirements. In addition, the path ⟨smain, 0⟩ → ⟨2, 0⟩ → ⟨3, s⟩ f−→

⟨4, a⟩ → ⟨11, a⟩ → ⟨21, k⟩ f̃−→ ⟨22, k⟩ is discarded by f̃ (as the nearest unmatched store is f),
effectively preventing tainting of b.f, and consequently, ruling out a leak at line 13.
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IDEDroid, operating in the IDE framework, limits propagation to base variables in the exploded
graph during Phase I. This phase involves calculating jump functions (intra-procedural environment
transformers) at every program point. For example, at the exit node of bar(), the jump function is

p
ff−−→ q. This strategy effectively reduces superfluous taint propagation and alias queries. Overall,

our IDE-based technique for field-sensitivity offers a number of key advantages:
• Smaller Data-flow Fact Domain. Utilizing a CFL to define field accesses allows 𝐷 to
comprise only base variables, significantly smaller than the version of 𝐷 in FlowDroid’s
access-path-based approach, which includes all access paths in the program (Figure 10).

• Less Taint Propagation. IDEDroid’s taint analysis in the IDE framework comprises two
phases: Phase I, where it iteratively computes jump functions (intra-procedural environment
transformers) until a fixed point, and Phase II, which calculates actual values, i.e., access paths
for each base variable 𝑣 . The time-intensive Phase I is optimized by exclusively handling base
variables, thus avoiding unnecessary propagation of access paths.

• Fewer Alias Queries. In contrast to FlowDroid, which issues a separate alias query for
each unique taint source at the same field store, IDEDroid’s CFL-based approach limits alias
queries to Phase I, generating just one query per field store. This strategy effectively reduces
the necessity for multiple queries for the same field store affected by different tainted access
paths, a common issue in FlowDroid discussed in Section 3.2.

1 void main() {

2 b1.h = source ();

3 b2 = foo(b1);

4 c = b2.g;

5 sink(c);//no leak

6 }

7 foo(p) {

8 x.f1.f2 = p;

9 y = x.f1.f2;

10 return y;

11 }

Fig. 3. Precision improvement of IDEDroid over FlowDroid (with 2-limiting).

• Improved Precision. Our CFL-based approach always outperforms the access-path-based
alternative in precision under 𝑘-limiting with the same 𝑘 value. For example, consider a
scenario with 2-limiting illustrated in Figure 3. FlowDroid, unable to differentiate between
x.f1.f2.h and x.f1.f2.g (both abstracted as x.f1.f2), erroneously reports a leak at line

5. In contrast, our approach simplifies ⟨8, p⟩ f2 f1−−−−→ ⟨9, x⟩ f1 f2−−−−→ ⟨10, y⟩ in foo() to ⟨8, p⟩ →
⟨10, y⟩ as the function summary, balancing all edge labels.When analyzing main(), a summary

edge ⟨3, b1⟩ → ⟨4, b2⟩ is created due to the call to foo() at Line 3. Since the path ⟨2, 0⟩ h−→
⟨3, b1⟩ −→ ⟨4, b2⟩ g−→ ⟨5, c⟩ is not CFL-reachable (as hg does not balance out), IDEDroid
correctly identifies that there is no leak at line 5.

4 Methodology

We describe our CFL-based field-sensitivity approach in the context of our new taint analysis tool,
IDEDroid, developed within the IDE framework. The tool’s workflow is depicted in Figure 4. In
this setup, the IDE solver computes environments mapping base variables (𝐷) to sets of field access
strings (𝐿), essentially denoting field access sequences. IDEDroid processes base variables as data-
flow facts in the program’s exploded graph 𝐺#, while tracking field accesses along each program
path. These field accesses are then evaluated through CFL-reachability, as shown in Figures 6 and 7.
IDEDroid uses Boomerang [Späth et al. 2016], a demand-driven, flow-, field-, and context-

sensitive pointer analysis, for alias queries at field stores of base variables in 𝐷 . It is important to
note that the alias analysis is orthogonal to this work. Boomerang returns aliased access paths,
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Fig. 4. The IDEDroid workflow in the IDE framework.

env.env[b env(b) ~f ]

0

0

env.env[b env(a) f ]

0

0

env.env[b env(a) f ]

0

0

env.env[b env(a)]

0

0

sanitize()

Fig. 5. Environment transformers used in IDEDroid.

which are transformed by IDEDroid into pairs ⟨𝑣, 𝑓 ∗⟩ (with 𝑣 as a base variable and 𝑓 ∗ as a field
access sequence). For example, v.f.g becomes ⟨v, gf⟩, with f and g indicating field stores. This
updates 𝐷 and 𝐿 accordingly. Following [Sagiv et al. 1996], IDEDroid operates in two phases: Phase
I propagates base variables and computes jump functions in the program’s exploded graph using
alias information, and Phase II identifies actual field access sequences for each base variable.

4.1 Environments and Environment Transformers for Taint Analysis

As outlined in [Sagiv et al. 1996], the set of environments 𝐸𝑛𝑣 (𝐷, 𝐿) consists of functions mapping
from 𝐷 to 𝐿, where 𝐷 is a finite set of symbols, and 𝐿 is a finite-height meet semi-lattice. An
environment 𝑒𝑛𝑣 (𝐷, 𝐿) ∈ 𝐸𝑛𝑣 (𝐷, 𝐿) maps a symbol 𝑑 ∈ 𝐷 to a value 𝑙 ∈ 𝐿, represented as 𝑒𝑛𝑣 (𝑑) ↦→
𝑙 . The meet operator for 𝐸𝑛𝑣 (𝐷, 𝐿), expressed as 𝑒𝑛𝑣1 ⊓ 𝑒𝑛𝑣2, is defined as 𝜆𝑑.(𝑒𝑛𝑣1 (𝑑) ⊓ 𝑒𝑛𝑣2 (𝑑)).

In the case of taint analysis, 𝐷 represents the set of base variables, and 𝐿 is the semi-lattice
consisting of sets of field access strings with set union as the meet operator ⊓. A field access string
is a labeled string recording field accesses along a program path. An environment 𝑒𝑛𝑣 (𝐷, 𝐿) maps
a base variable 𝑣 ∈ 𝐷 to a set of field access strings 𝑙 ∈ 𝐿, collectively representing access paths
with the base variable 𝑣 . Rather than encoding an access path like 𝑣 .𝑓 directly as 𝑒𝑛𝑣 (𝑣) ↦→ {𝑓 }, 𝑙
includes different types of field accesses—stores, loads, and kills (sanitization) of field 𝑓—essential
for computing jump functions in Phase I. As briefly observed from Figure 5, which will be elaborated
on shortly, labels 𝑓 , 𝑓 , and 𝑓 are used for store, load, and kill, respectively.

The environment 𝑒𝑛𝑣 (𝐷, 𝐿) is formally defined as follows.

Definition 4.1. In IDEDroid, 𝑒𝑛𝑣 (𝐷, 𝐿) associates each base variable 𝐷 with a set 𝐿 of field access

strings, where each string 𝑙 ∈ 𝐿 consists of labels 𝑓 , 𝑓 , 𝑓 , or 𝜖 for the empty string.
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F ::= L S
L ::= M L | 𝑓𝑖 L | 𝜖
S ::= M S | 𝑓𝑖 S | 𝜖
M ::= 𝑓𝑖 M 𝑓𝑖 | M M | 𝜖

Fig. 6. A simplified context-free grammar for field accesses without considering kill operations.

We introduce ⊗, a left-associative binary operator, efficiently implemented as described in
Section 4.2. It operates on both individual and sets of field access strings, concatenating them
and then verifying their validity against our CFL. Based on CFL-reachability, outcomes are either
updated or discarded. When applied to sets, ⊗ evaluates each pair in their Cartesian product.

An environment transformer 𝑡 : 𝐸𝑛𝑣 (𝐷, 𝐿) ↦→ 𝐸𝑛𝑣 (𝐷, 𝐿) is a function that maps one environment
to another. Within the IDE framework, these transformers are linked to edges in the program’s
exploded graph 𝐺#, by assigning an edge function, 𝐸𝑑𝑔𝑒𝐹𝑛𝑑𝑚,𝑛 , to each edge ⟨𝑚,𝑑⟩ → ⟨𝑛,𝑑 ′⟩.

This edge function maps 𝐿 to 𝐿, so that 𝑑
𝐸𝑑𝑔𝑒𝐹𝑛𝑑𝑚,𝑛−−−−−−−−→ 𝑑 ′ denotes the transformer 𝜆𝑒𝑛𝑣 .𝑒𝑛𝑣 [𝑑 ′ ↦→

𝐸𝑑𝑔𝑒𝐹𝑛𝑑𝑚,𝑛 (𝑒𝑛𝑣 (𝑑))], updating the target fact 𝑑 ′ based on the source fact 𝑑 .
Figure 5 gives four types of edge functions and their environment transformers employed

by IDEDroid for four different categories of statements. As these edge functions are simple,
when writing ⟨𝑚,𝑎⟩ 𝑙−→ ⟨𝑛,𝑏⟩ (with 𝑙 as a set of field access strings), we imply an edge function
𝐸𝑑𝑔𝑒𝐹𝑛(𝑒𝑛𝑣 (𝑎)) = 𝑒𝑛𝑣 (𝑎) ⊗ 𝑙 , streamlining the transformer to 𝜆𝑒𝑛𝑣 .𝑒𝑛𝑣 [𝑏 ↦→ 𝑒𝑛𝑣 (𝑎) ⊗ 𝑙]. For the
singleton set 𝑙 = {𝑓 ∗}, we sometimes write 𝑓 ∗ directly. Let us take a closer look at Figure 5 below:

• Assignment: An edge ⟨𝑚,𝑎⟩ → ⟨𝑛,𝑏⟩ for assignment 𝑏 = 𝑎 uses the transformer
𝜆𝑒𝑛𝑣 .𝑒𝑛𝑣 [𝑏 ↦→ 𝑒𝑛𝑣 (𝑎)]. This copies field access strings from 𝑎 to 𝑏.

• Store:A store edge ⟨𝑚,𝑎⟩
𝑓
−→ ⟨𝑛,𝑏⟩ for𝑏.𝑓 = 𝑎 has the transformer 𝜆𝑒𝑛𝑣 .𝑒𝑛𝑣 [𝑏 ↦→ 𝑒𝑛𝑣 (𝑎)⊗𝑓 )].

Additionally, for an aliased access path of 𝑏.𝑓 like 𝑐.𝑔.ℎ, an edge ⟨𝑚,𝑎⟩
ℎ𝑔
−−→ ⟨𝑛, 𝑐⟩ is added,

denoted by 𝜆𝑒𝑛𝑣 .𝑒𝑛𝑣 [𝑐 ↦→ 𝑒𝑛𝑣 (𝑎)⊗ℎ𝑔].

• Load and Kill: For a load ⟨𝑚,𝑎⟩
𝑓
−→ ⟨𝑛,𝑏⟩ (𝑏 = 𝑎.𝑓 ) and a kill ⟨𝑚,𝑏⟩

𝑓
−→ ⟨𝑛,𝑏⟩ (𝑏.𝑓 =

𝑠𝑎𝑛𝑖𝑡𝑖𝑧𝑒 ()), the transformers set 𝑏’s field access string set to 𝑒𝑛𝑣 (𝑎)⊗𝑓 and 𝑒𝑛𝑣 (𝑏)⊗𝑓 , respec-
tively, while keeping everything else unchanged.

The transformers described above modify 𝑒𝑛𝑣 (𝑏) using the values from 𝑒𝑛𝑣 (𝑎). It is straightfor-
ward to confirm that all the environment transformers shown in Figure 5 are distributive.

4.2 CFL-Reachability for Field-Sensitivity

A new CFL is defined with a context-free grammar specifically designed for capturing valid field
access strings, labeling any string not conforming to this grammar as invalid, subject to removal.
We start with a simplified version in Figure 6, where kill operations are overlooked by treating 𝑓 as
𝜖 . In this grammar, the terminals (or labels) 𝑓𝑖 , 𝑓𝑖 , and 𝜖 symbolize store, load, and assign operations,
respectively. In addition, the non-terminal symbols are defined as follows:

• M: This symbolizes a string with perfectly matched store (𝑓𝑖 ) and load (𝑓𝑖 ) accesses.
• L: Strings derived as L have matched stores (if present) and may end with field loads.
• S: Strings derived as S have matched loads (if present) and may end with field stores.
• F : The start symbol, an F -string, results from concatenating an L-string with an S-string.

By convention, a string derived from a nonterminal 𝑋 is referred to as an X-string.
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F ::= L K S
L ::= M L | L𝑖 L | 𝜖
S ::= M S | S𝑖 S | 𝜖
M ::= S𝑖 L𝑖 | M M | 𝜖
K ::= 𝑓̃𝑖 K | 𝜖
L𝑖 ::= 𝑓𝑖 M | 𝑓̃𝑗 L𝑖 (𝑖≠𝑗 )
S𝑖 ::= 𝑓𝑖 M | S𝑖 𝑓𝑗 (𝑖≠𝑗 )

Fig. 7. A complete context-free grammar for specifying field accesses in IDEDroid.

Without kill operations, a taint propagation path through a series of statements is captured by
a field access string comprising a sequence of load labels followed by store labels. Any perfectly
matched pairs of stores and loads simplify to 𝜖 , reflecting removal of balanced paratheses.
The grammar in Figure 6 defines an extended Dyck CFL for partially matched fields [Kodumal

and Aiken 2004; Shi et al. 2022]. In our motivating example from Figure 2, ff is a valid partially

matched string on the path ⟨17, p⟩ f−→ ⟨18, v⟩ f−→ ⟨19, q⟩, indicating that v is first loaded from p.f
and then stored to q.f. Conversely, a string like gf is invalid according to the grammar, as it implies
loading from field f, which does not match the previously stored field g.

4.2.1 Modeling Kill Operations. The grammar in Figure 6 is expanded in Figure 7 to include kill
operations. L𝑖 denotes field access strings with a single unmatched load lacking an immediate
left-matching kill, because a kill 𝑓 nullifies a string if followed by a corresponding load 𝑓 (e.g., b.f
= sanitize() sanitizes a subsequent load x = b.f). Similarly, S𝑖 represents field access strings
with a single unmatched store without an immediate right-matching kill, as a kill 𝑓 voids a string
if it follows a matching store 𝑓 (e.g., b.f = sanitize() sanitizes a preceding store b.f = s).
In the revised grammar of Figure 7, L, S, and M’s productions were updated, replacing 𝑓𝑖 and

𝑓𝑖 with S𝑖 and L𝑖 . This adjustment allows L and S to represent sequences of loads and stores,
including kills, once matched pairs are simplified to 𝜖 . Thus, M accurately reflects strings of
matched stores and loads, incorporating kills. In taint propagation, however, kills from L, S, or M
are deemed inconsequential, treated as 𝜖 , since they do not affect taint propagation. For example,
the code “a = source(); a.f = sanitize(); b = a.g; c = b.f;” produces a string f̃gf from
L, where f̃ is seen as 𝜖 . Likewise, “a = source(); b.g = a; b.f = sanitize(); c.f = b;”
generates a string g̃ff from S, with f̃ also regarded as 𝜖 .
Therefore, to account for kill operations in taint propagation, a new non-terminal symbol K is

introduced, signifying strings of any number of kills. An F -string combines an L-string, aK-string,
and an S-string, placing K between L and S to effectively capture kills’ impact.
With this modeling of kill operations, a taint propagation path is represented by a field access

string consisting of sequences of loads (L), kills (K), and stores (S). It is understood that kills
within L and S are disregarded, and balanced pairs of stores and loads are reduced to 𝜖 .

In the code sequence “1: b.f1 = a; 2: b.f1 = sanitize(); 3: c = b.f1; 4: . . . ”, where a is assumed

to be already tainted, the path ⟨1, a⟩ f1−−→ ⟨2, b⟩ f̃1−−→ ⟨3, b⟩ f1−−→ ⟨4, c⟩ forms f1f̃1f1, invalidated by
the grammar in Figure 7. This indicates “b.f1 = sanitize()” sanitizes the tainted path through
b.f1. Modifying line 2 to “b.f2 = sanitize()” results in f1f̃2f1, which the grammar accepts (as
a balanced parenthesis according to the grammar in Figure 7), showing c becomes tainted from
b.f1, unaffected by the unrelated b.f2 sanitization (with f̃2 interpreted as 𝜖). Finally, consider “a
= source(); b = a.f; c = b.g; c.h = sanitize(); x.r = c; y = x.r; z = y.h;” Given
its field access string as fg̃hrrh, z is untainted as c.h, i.e., y.h has been effectively sanitized.
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4.2.2 Efficient CFL-Reachability Solving. We have devised an efficient algorithm to analyze field
accesses based on CFL-reachability, building upon the following four key observations:

• The ⊗ operator is applied only to an F -string 𝐹 and a terminal symbol. For the operation
𝐹⊗𝐹 ′, with 𝐹 ′ = 𝑓1...𝑓𝑘 , this is equivalent to sequential applications 𝐹⊗𝑓1⊗ . . . ⊗𝑓𝑘 .

• For an F -string 𝐹 , applying 𝐹⊗𝑓 invariably results in an F -string. 𝐹⊗𝑓 produces an F -string
if 𝑓 does not match the last store in 𝐹 . Conversely, 𝐹⊗𝑓 yields an F -string if 𝑓 matches the
last store 𝑓 in 𝐹 or if 𝐹 has no stores and 𝑓 does not match any kill in 𝐹 .

• In an F -string 𝐹 , the order in which the kill operations appear does not influence the outcomes
of subsequent operations. Whether 𝐹⊗𝑓 or 𝐹⊗𝑓 , the kill operation 𝑓 , once added to 𝐹 , will
not sanitize any existing field accesses in 𝐹 . For instance, the sequence “b = source();

a.f1 = b; x.f2 = a; x.f1 = sanitize()” illustrates that the kill f̃1 fails to cleanse
the taint on a.f1, since x.f1 and a.f1 have distinct base variables. However, for 𝐹⊗𝑓 , it
is crucial to examine all kill operations in 𝐹 regarding 𝑓 to evaluate their effectiveness in
field load sanitation. The scenario “x.f1 = sanitize(); x.f2 = sanitize(); y = x.f1”
exemplifies a successful kill operation, effectively rendering y untainted.

• In an F -string, a pair of matching load and store operations can be simplified to 𝜖 .
For an F -string 𝐹 , since the order of kill operations does not matter, we can represent 𝐹 as

a sequence of loads and stores, alongside a distinct set of kills. By reducing matched load and
store pairs to 𝜖 , we can simplify this particular sequence into a sub-sequence of unmatched loads
followed by a sub-sequence of unmatched stores. This streamlined approach allows us to improve
the efficiency of ⊗ operations by offering a more concise representation of 𝐹 .

Definition 4.2. A valid field access string 𝐹 defined by the grammar in Figure 7 is expressed by a

triple ⟨𝐿𝐹 , 𝐾𝐹 , 𝑆𝐹 ⟩, where 𝐿𝐹 = 𝑓 ∗𝑖 , 𝐾𝐹 = {𝑓0, 𝑓1, ...}, and 𝑆𝐹 = 𝑓𝑖
∗
.

From the above observations, we can specifically define ⊗ for pairs of a field access string and a
terminal, enabling these operations to be executed efficiently in nearly constant time:

⊗:



𝐹⊗ 𝑓 =


Nil 𝑆𝐹 = 𝜖 ∧ 𝑓 ∈ 𝐾𝐹

⟨𝑐𝑜𝑛𝑠 (𝑓 , 𝐿𝐹 ), ∅, 𝑆𝐹 ⟩ 𝑆𝐹 = 𝜖 ∧ 𝑓 ∉ 𝐾𝐹

Nil 𝑐𝑎𝑟 (𝑆𝐹 ) = 𝑓 ′ (𝑓 ≠ 𝑓 ′)
⟨𝐿𝐹 , 𝐾𝐹 , 𝑐𝑑𝑟 (𝑆𝐹 )⟩ 𝑐𝑎𝑟 (𝑆𝐹 ) = 𝑓

𝐹⊗ 𝑓 =


Nil 𝑐𝑎𝑟 (𝑆𝐹 ) = 𝑓
⟨𝐿𝐹 , 𝐾𝐹 , 𝑆𝐹 ⟩ 𝑐𝑎𝑟 (𝑆𝐹 ) = 𝑓 ′ (𝑓 ≠ 𝑓 ′)
⟨𝐿𝐹 , 𝐾𝐹 ∪ {𝑓 }, 𝑆𝐹 )⟩ 𝑆𝐹 = 𝜖

𝐹⊗ 𝑓 = ⟨𝐿𝐹 , 𝐾𝐹 , 𝑐𝑜𝑛𝑠 (𝑓 , 𝑆𝐹 )⟩

(1)

This definition employs the standard 𝑐𝑜𝑛𝑠 , 𝑐𝑎𝑟 , and 𝑐𝑑𝑟 functions, outlining three ⊗ operations:
𝐹⊗𝑓 , 𝐹⊗𝑓 , and 𝐹⊗𝑓 . The function cons(𝑓 , 𝐹 ) constructs a new access string by prepending 𝑓 to 𝐹 .
The function car(𝐹 ) returns the first element of 𝐹 , and the function cdr(𝐹 ) returns the remainder of
𝐹 , excluding the first element. For each operation, where 𝐹 represents a valid F-string, the outcome
must also be a valid string, unless it is discarded during analysis. Let us examine these operations
further.

The 𝐹⊗𝑓 operation is the most complex, unfolding in four cases. Initially, if 𝐹 lacks stores (𝑆𝐹 = 𝜖)
and 𝑓 is already countered by a prior kill (𝑓 ∈ 𝐾𝐹 ), the resulting string is disregarded (signified
by Nil). Next, when 𝐹 is devoid of stores and 𝑓 escapes neutralization by any kill in 𝐹 (𝑓 ∉ 𝐾𝐹 ), 𝑓
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1 void main() {

2 a = source ();

3 b.f1 = a;

4 x = b.f1;

5 b.f2 = sanitize() ;

6 b.f3 = sanitize() ;

7 y = b.f2;

8 z = b.f3;

9 }

(a) An example program

⟨3, a⟩

⟨2, 0⟩

⟨4, b⟩ ⟨5, b⟩ ⟨6, b⟩ ⟨7, b⟩ ⟨8, b⟩

⟨5, x⟩ ⟨8, y⟩

⟨9, z⟩

𝜖

f1 𝜖 f̃2 f̃3 𝜖

f1 f2

f3

f1f1

f1f̃2f̃3f2

f1f̃2f̃3f3

(b) Part of its exploded supergraph

Fig. 8. An example for illustrating our CFL-based approach utilizing the ⊗ operations in Equation (1).

gets added to 𝐹 , and 𝐾𝐹 is cleared to ∅, indicating a kill only affects its immediate right-matching
load. If 𝑓 mismatches the nearest store in 𝐹 (𝑐𝑎𝑟 (𝑆𝐹 ) = 𝑓 ′ such that 𝑓 ′ ≠ 𝑓 ), this configuration
is also discarded, signifying an unreachable CFL path. Conversely, if 𝑓 matches the nearest store
(𝑐𝑎𝑟 (𝑆𝐹 ) = 𝑓 ), that matching store is removed from 𝐹 , simplifying the load and store pair to 𝜖 .

For the operation 𝐹⊗𝑓 , if 𝑓 matches the nearest store 𝑐𝑎𝑟 (𝑆𝐹 ), the string is discarded. This signifies
that a kill operation only impacts the store immediately preceding it that matches, indicating the
sanitization of the field 𝑓 . If there is no matching store, 𝐹 remains the same. When 𝐹 lacks stores, 𝑓
is appended to 𝐹 , setting the stage to sanitize any future load (captured by the first case in 𝐹⊗𝑓 ).

For the operation 𝐹⊗𝑓 , which is applied for processing a store statement, 𝑓 is simply added to 𝐹 .
For these three ⊗ operations, all except 𝐹⊗𝑓 execute in𝑂 (1) time. Theworst-case time complexity

for 𝐹⊗𝑓 , in cases where 𝑓 ∈ 𝐾𝐹 and 𝑓 ∉ 𝐾𝐹 , scales linearly with the number of kill operations in
𝐾𝐹 . However, on average, these cases can be processed in 𝑂 (1) due to 𝐾𝐹 being a hash set.

Revisiting the four edge functions depicted in Figure 5, for edges ⟨𝑚,𝑎⟩ 𝑙−→ ⟨𝑛,𝑏⟩ in 𝐺#, the envi-
ronment transformers take the form 𝜆𝑒𝑛𝑣 .𝑒𝑛𝑣 [𝑏 ↦→ 𝑒𝑛𝑣 (𝑎)⊗𝑙], where 𝑙 is a set of field access strings.
In the case of assignments, where 𝑙 = 𝜖 , the transformer simplifies to 𝜆𝑒𝑛𝑣 .𝑒𝑛𝑣 [𝑏 ↦→ 𝑒𝑛𝑣 (𝑎)⊗𝜖], i.e.,

𝜆𝑒𝑛𝑣 .𝑒𝑛𝑣 [𝑏 ↦→ 𝑒𝑛𝑣 (𝑎)]. For store operations indicated by ⟨𝑚,𝑎⟩
𝑓
−→ ⟨𝑛,𝑏⟩, transformers are defined

as 𝜆𝑒𝑛𝑣 .𝑒𝑛𝑣 [𝑏 ↦→ 𝑒𝑛𝑣 (𝑎)⊗𝑓 ], where {𝑓 } is notationally reduced to 𝑓 for clarify.
In IDEDroid, taint sources are processed in a standard fashion (at least conceptually). For example,

given the statement “ℓ : x = source()”, located at line number ℓ , an edge ⟨ℓ, 0⟩ 𝜖−→ ⟨ℓ + 1, 𝑥⟩ is
added to the exploded supergraph of the program. This indicates that the variable x is tainted just
prior to line ℓ + 1. According to Definition 4.2, this 𝜖 is represented by the triple ⟨𝜖, ∅, 𝜖⟩.
Figure 8 illustrates an application of Equation (1) to a simple example. By analyzing ⟨2, 0⟩ 𝜖−→

⟨3, a⟩ f1−−→ ⟨4, b⟩ f1−−→ ⟨5, x⟩, we identify the following: the F -string ⟨𝜖, ∅, 𝜖⟩ for a before line 3;
⟨𝜖, ∅, f1⟩ for b before line 4; and ⟨𝜖, ∅, 𝜖⟩ for x before line 5. This analysis indicates that x = b.f1
is tainted just before line 5, as further discussed in Section 4.3. In the extended path leading to

y, ⟨2, 0⟩ 𝜖−→ ⟨3, a⟩ f1−−→ ⟨4, b⟩ 𝜖−→ ⟨5, b⟩ f̃2−−→ ⟨6, b⟩ f̃3−−→ ⟨7, b⟩ f2−−→ ⟨8, y⟩, we deduce an F -string
⟨𝜖, {f̃2, f̃3}, 𝜖⟩ before line 7. This string transforms to Nil for y before line 8 after computing
⟨𝜖, {f̃2, f̃3}, 𝜖⟩⊗𝑓 2, indicating that y = b.f2 is not tainted. Similarly, z = b.f3 is determined to
be untainted.
Combining two F -strings, 𝐹1 and 𝐹2, through 𝐹1⊗𝐹2 follows Definition 4.2 straightforwardly.

We can represent 𝐹2 as ⟨𝐿𝐹2 , 𝐾𝐹2 , 𝑆𝐹2⟩ = ⟨𝑓 21 . . . 𝑓 2𝑘 , {𝑔
2
0, . . . , 𝑔

2
𝑛}, ℎ21 . . . ℎ2𝑚⟩. The combination, 𝐹1⊗𝐹2,
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is then computed as 𝐹1⊗𝑓 2𝑘 ⊗ . . . ⊗𝑓
2
1 ⊗𝑔20⊗ . . . ⊗𝑔2𝑛⊗ℎ2𝑚⊗ . . . ⊗ℎ21, inverting 𝐿𝐹2 and 𝑆𝐹2 sequences to

align with the strategy of adding new field accesses at the beginning.

4.2.3 K-Limiting. The grammar depicted in Figure 7 ensures field-sensitivity, and when combined
with the context-sensitivity modeled inherently by the IDE framework [Sagiv et al. 1996], it leads to
an interleaved CFL-reachability problem. However, this problem is known to be undecidable [Reps
2000]. To address this, similar to the approach in [Arzt et al. 2014], we make use of 𝑘-limiting, which
restricts the number of symbols in a field access string. This restriction effectively transforms the
context-free grammar given in Figure 7 into a regular grammar. In IDEDroid, 𝑘-limiting restricts
stores and loads in a field access string to 𝑘 , but allows unlimited kills while preserving decidability.
With 𝑘-limiting, 𝐹⊗𝑓 treats 𝑓 as 𝜖 if 𝐿𝐹 hits 𝑘 , while 𝐹⊗𝑓 deletes 𝑆𝐹 ’s last symbol upon reaching 𝑘 .

4.3 The IDE Solver

IDEDroid uses the standard IDE solver in two phases, Phase I and Phase II, with their dynamic
programming algorithms detailed in [Sagiv et al. 1996]. We briefly describe the roles of these phases,
guided by the edge functions from Section 4.2.2 and illustrated in Figure 5.

In Phase I, for a node ⟨𝑛,𝑑⟩ in method 𝑝 , assuming 𝑣𝑝 is a parameter, and 𝑠𝑝 and 𝑒𝑝 are its unique
entry and exit nodes, respectively, IDEDroid constructs a jump function from ⟨𝑠𝑝 , 𝑣𝑝⟩ to ⟨𝑛,𝑑⟩.

This function is represented as ⟨𝑠𝑝 , 𝑣𝑝⟩
𝑙⟨𝑣𝑝 ,𝑑⟩−−−−→ ⟨𝑛,𝑑⟩, with 𝑙⟨𝑣𝑝 ,𝑑 ⟩ embodying a set of field access

strings. The associated transformer is 𝜆𝑒𝑛𝑣 .𝑒𝑛𝑣 [𝑑 ↦→ 𝑒𝑛𝑣 (𝑣𝑝 )⊗𝑙⟨𝑣𝑝 ,𝑑 ⟩], with each string in 𝑙⟨𝑣𝑝 ,𝑑 ⟩
representing field accesses on a realizable path from ⟨𝑠𝑝 , 𝑣𝑝⟩ to ⟨𝑛,𝑑⟩. Additionally, IDEDroid builds

function summaries based on jump functions from 𝑠𝑝 to 𝑒𝑝 , represented as ⟨𝑠𝑝 , 𝑣𝑝⟩
𝑙⟨𝑣𝑝 ,𝑣′𝑝 ⟩
−−−−−→ ⟨𝑒𝑝 , 𝑣 ′𝑝⟩,

where 𝑣 ′𝑝 is a base variable. For inter-procedural call and return edges ⟨𝑐𝑖 , 𝑎𝑐⟩
𝜖−→ ⟨𝑠𝑝 , 𝑣𝑝⟩ and

⟨𝑒𝑝 , 𝑣 ′𝑝⟩
𝜖−→ ⟨𝑟𝑖 , 𝑎′𝑐⟩, where 𝑎′𝑐 is a base variable, IDEDroid introduces a summary edge in the caller.

This is expressed as ⟨𝑐𝑖 , 𝑎𝑐⟩
𝑙⟨𝑣𝑝 ,𝑣′𝑝 ⟩
−−−−−→ ⟨𝑟𝑖 , 𝑎′𝑐⟩, leading to an update in the jump function for ⟨𝑟𝑖 , 𝑎′𝑐⟩.

Phase I continues until all jump functions are computed, indicating a fixed point has been reached.

In Phase II, IDEDroid calculates the actual value for each node ⟨𝑛,𝑑⟩ by resolving ⟨𝑠main, 0⟩
𝑙⟨0,𝑑⟩−−−→

⟨𝑛,𝑑⟩, where 𝑑 is a base variable and 𝑙⟨0,𝑑 ⟩ is a set of field access strings. Consequently, we utilize
the standard 𝑣𝑎𝑙 (⟨𝑛,𝑑⟩) function to record the set of field access strings of a base variable 𝑑 at a
program point 𝑛. Each string in this set is translated into a field access sequence. This sequence,
combined with the base variable 𝑑 , forms an access path for 𝑑 . Specifically, the field access string
𝐹 , which is identified as a triple ⟨𝐿𝐹 , 𝐾𝐹 , 𝑆𝐹 ⟩ = ⟨𝑓1 . . . 𝑓𝑘 , {𝑔0 . . . 𝑔𝑛}, ℎ1 . . . ℎ𝑚⟩ (Definition 4.2), is
converted to a field access sequence ℎ1...ℎ𝑚 , leading to the access path 𝑑.ℎ1 ...ℎ𝑚 . In the special case
when 𝐹 has no stores, the access path becomes the base variable itself 𝑑 . Unbalanced loads in 𝐿𝐹
suggest that the base variable 𝑑 is loaded from unknown sources, e.g., external inputs, while 𝐾𝐹

indicates the removal of non-relevant fields to the access path.
To optimize performance, Phase II initially determines the actual values of formal parameters

through an iterative process. This process involves propagating values from actual parameters to
their corresponding formal parameters and vice versa, from formal parameters back to the call sites
within their containing functions. The actual value of a formal parameter is calculated by resolving

⟨𝑠main, 0⟩
𝑙⟨0,𝑣𝑝 ⟩
−−−−→ ⟨𝑠𝑝 , 𝑣𝑝⟩, leading to 𝑣𝑎𝑙 (⟨𝑠𝑝 , 𝑣𝑝⟩) = 𝑙⟨0,𝑣𝑝 ⟩ . Following this, the actual value 𝑣𝑎𝑙 (⟨𝑛,𝑑⟩)

for each node ⟨𝑛,𝑑⟩ in method 𝑝 is determined according to the values of its parameters. This is

achieved by applying the jump functions ⟨𝑠𝑝 , 𝑣𝑖𝑝⟩
𝑙⟨𝑣𝑖𝑝 ,𝑑⟩−−−−→ ⟨𝑛,𝑑⟩ to 𝑣𝑎𝑙 (⟨𝑠𝑝 , 𝑣𝑖𝑝⟩) for each parameter
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and then taking the union of these results. Here, 𝑣𝑖𝑝 represents the 𝑖-th parameter (starting from 1)
of method 𝑝 , which has 𝑁 parameters. The union is computed as

⋃
𝑖∈{1..𝑁 } 𝑣𝑎𝑙 (⟨𝑠𝑝 , 𝑣𝑖𝑝⟩)⊗𝑙⟨𝑣𝑖𝑝 ,𝑑 ⟩ .

4.4 Revisiting the Motivating Example

Let us apply our IDE-based approach to perform taint analysis on the example in Figure 2.

4.4.1 Phase I. IDEDroid constructs jump functions by computing intra-procedural realizable

paths. For example, in the then branch, three path edges: ⟨𝑠main, 0⟩
{f}
−−→ ⟨7, a⟩, ⟨𝑠main, 0⟩

{g}
−−→ ⟨7, a⟩,

and ⟨𝑠main, 0⟩
{h}
−−→ ⟨7, a⟩, contribute to the jump function ⟨𝑠main, 0⟩

{f,g,h}
−−−−−→ ⟨7, a⟩. Additionally, in

bar(), the summary function ⟨17, p⟩
{ff}
−−−→ ⟨19, q⟩ creates a summary edge ⟨7, a⟩

{ff}
−−−→ ⟨8, b⟩ at

bar()’s call site. Combining these functions yields ⟨𝑠main, 0⟩
{f}
−−→ ⟨8, b⟩ as {f, g, h}⊗{ff} = {f}.

This leads to the computation of ⟨𝑠main, 0⟩
{𝜖 }
−−→ ⟨9, x⟩, ultimately detecting a potential leak at line 9.

In the else branch (lines 11-13), IDEDroid begins with the path edge ⟨𝑠main, 0⟩
{f,g,h}
−−−−−→ ⟨11, a⟩. A

summary function ⟨21, k⟩
{f̃}
−−→ ⟨22, k⟩ then adds a summary edge ⟨11, a⟩

{f̃}
−−→ ⟨12, a⟩. This leads

to the jump function ⟨𝑠main, 0⟩
{g,h}
−−−−→ ⟨12, a⟩, derived from {f, g, h}⊗{f̃}. With the edge function

⟨12, a⟩
{f}
−−→ ⟨12, y⟩, no viable path edge leads to ⟨13, y⟩ as the operation {g̃f, h̃f}⊗{f} = ∅. As a

result, y is not added to 𝐷 , and sink(y) at line 13 will not be identified as a leak.

4.4.2 Phase II. IDEDroid computes the actual values of nodes in the program’s exploded graph.
This involves initially determining the actual values of formal parameters by propagating values
from call nodes. For example, the value for the actual parameter at node ⟨7, a⟩ is computed as

𝑣𝑎𝑙 (⟨7, a⟩) = {f, g, h}, based on the jump function ⟨𝑠main, 0⟩
{f,g,h}
−−−−−→ ⟨7, a⟩. For the call edge ⟨7, a⟩ →

⟨17, p⟩, we therefore have 𝑣𝑎𝑙 (⟨17, p⟩) = {f, g, h}. Similarly, for node ⟨21, k⟩, 𝑣𝑎𝑙 (⟨21, k⟩) = {f, g, h}.
Analyzing node ⟨18, v⟩, we start with its jump function ⟨17, p⟩

{f}
−−→ ⟨18, v⟩. The value val(⟨18, v⟩)

is obtained by val(⟨17, p⟩)⊗{f}, which translates to {f, g, h}⊗{f}, yielding {𝜖}. This suggests that

v becomes tainted before line 18. Next, considering node ⟨22, k⟩, its jump function is ⟨21, k⟩
{f̃}
−−→

⟨22, k⟩. Thus, val(⟨22, k⟩) = val(⟨21, k⟩)⊗{f̃} = {f, g, h}⊗{f̃} before line 22, resulting in the set of
field access strings {g, h}. These two strings indicate k.g and k.h are tainted prior to line 22.

4.5 Precision and Soundness.

We discuss IDEDroid’s precision and soundness, based on its field access string representation
(Definition 4.2), against FlowDroid’s standard access path encoding.

Lemma 1. Without 𝑘-limiting (i.e., when 𝑘 = ∞), for any tainted access string found by IDE-

Droidwithout encountering kill operations, we can always find a corresponding tainted access path in

FlowDroid representing the same leak (i.e., the same leak on the same object field), and vice versa.

Proof Sketch. Eliminating kill operations simplifies the grammar from Figure 7 to Figure 6,
corresponding to the standard context-free grammar for tracking field accesses via the balanced
parentheses problem [Reps 1998]. Thus, while FlowDroid explicitly models tainted data-flow facts
using access paths, IDEDroid does so implicitly yet equivalently via a CFL approach. For a field
access string ⟨_, _, ℎ1 . . . ℎ𝑚⟩ associated with base variable 𝑣 at line ℓ , IDEDroid deems 𝑣 .ℎ1...ℎ𝑚
tainted within its CFL-reachability approach for field sensitivity (Section 4.3). Analyzing the same
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statement sequence from which IDEDroid derives ⟨_, _, ℎ1 . . . ℎ𝑚⟩, FlowDroid likewise propagates
the taint 𝑣 .ℎ1...ℎ𝑚 to line ℓ using its access-path-based method. This logic is reciprocal. □

Lemma 2. Without 𝑘-limiting (i.e., when 𝑘 = ∞), IDEDroid surpasses FlowDroid in precision by

sanitizing a strict superset of false positives, effectively sanitizing all that FlowDroid does and more.

Proof Sketch. Consider the scenario of taint propagation where 𝑥 is already tainted at the
point where 𝑥 .𝑓 = 𝑠𝑎𝑛𝑖𝑡𝑖𝑧𝑒 () occurs. Semantically, 𝑥 .𝑓 = 𝑠𝑎𝑛𝑖𝑡𝑖𝑧𝑒 () is expected to eliminate all
tainted paths starting with 𝑥 .𝑓 . Upon detecting 𝑓 , IDEDroid discards the string ⟨−,−, 𝑓 . . . ⟩ and
also uses 𝑥 .𝑓 = 𝑠𝑎𝑛𝑖𝑡𝑖𝑧𝑒 () to nullify the right-matching load 𝑎 = 𝑥 .𝑓 , turning ⟨−, {. . . , 𝑓 , . . . }, 𝜖⟩⊗𝑓
into Nil, thereby sanitizing 𝑥 .𝑓 even if previously tainted (Equation 1). Conversely, FlowDroid’s
approach is less precise; it treats all access paths from tainted 𝑥 as tainted, making 𝑥 .𝑓 = 𝑠𝑎𝑛𝑖𝑡𝑖𝑧𝑒 ()
only cleanse 𝑥 .𝑓 , not 𝑥 , leaving 𝑎 tainted after loading from still-tainted 𝑥 . □

Lemma 3. With 𝑘-limiting (Section 4.2.3), IDEDroid is strictly more precise than FlowDroid.

Proof Sketch. In FlowDroid, a field access path with length 𝑘 , denoted 𝑣 .𝑓1 . . . 𝑓𝑘 , can always
be represented as a field access string with 𝑘 stores in IDEDroid. IDEDroid enhances precision by
simplifying matched load and store pairs to 𝜖 (in the fourth case of 𝐹⊗𝑓 in Equation 1), allowing it
to handle access paths exceeding 𝑘 in length, as shown in Figure 3. □

Figure 3 gives an example, for which IDEDroid achieves greater precision than FlowDroid
under 2-limiting. FlowDroid erroneously reports a leak at line 5, but IDEDroid, using its grammar,

simplifies ⟨8, p⟩ f2 f1−−−−→ ⟨9, x⟩ f1 f2−−−−→ ⟨10, y⟩ in foo() to ⟨8, p⟩ → ⟨10, y⟩ (as its function summary).

This leads to a summary edge ⟨3, b1⟩ → ⟨4, b2⟩ for the call at line 3. Thus, ⟨2, 0⟩ h−→ ⟨3, b1⟩ −→
⟨4, b2⟩ g−→ ⟨5, c⟩ is not CFL-reachable, as the access string on that path ℎ𝑔 is not compatible with
our grammar. This leads IDEDroid to correctly infer that there are no leaks at line 5.

Theorem 1. IDEDroid exceeds FlowDroid in precision under 𝑘-limiting with identical 𝑘 values.

Proof. This is due to IDEDroid identifying all truly tainted access paths (Lemma 1) and filtering
out some falsely tainted access paths that FlowDroid does not, both without 𝑘-limiting (Lemma 2)
and when 𝑘-limiting is applied (Lemma 3). □

5 Evaluation

To evaluate the impact of our research, we focused on the following research questions in our
assessment of IDEDroid, which uses our CFL-based approach for field-sensitivity in the IDE
framework, and FlowDroid, with its access-path-based method in the IFDS framework:

• RQ1. How does IDEDroid’s performance compare with that of FlowDroid?
• RQ2. Does IDEDroid offer greater precision than FlowDroid?
• RQ3. Can IDEDroid facilitate tradeoffs between efficiency and precision?
• RQ4. Does IDEDroid maintain the known performance characteristics in Phases I and II?

Our assessment included programs on unit test cases and large, real-world Android apps.

5.1 Experimental Setting

We developed IDEDroid on top of FlowDroid, which is built using Soot [Lam et al. 2011]. Both
IDEDroid and FlowDroid deploy the same demand-driven pointer analysis, Boomerang [Späth
et al. 2016], for alias queries. IDEDroid generates alias queries only in Phase I when storing a tainted
base variable, mirroring Boomerang’s approach adopted in FlowDroid. Phase II aggregates field
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access strings without triggering alias queries. IDEDroid’s alias handling in Phase I aligns with
FlowDroid combined with Boomerang, maintaining soundness and precision as outlined in [Späth
et al. 2016]. Note that FlowDroid is integrated with Boomerang, which utilizes the optimized IFDS
solver, FastSolver [Arzt 2017]. In contrast, IDEDroid employs the standard Heros [Bodden 2012]
IDE solver due to the absence of an optimized IDE solver at this time. In our experiments, we used
the version of FlowDroid (ad6a287) from the Boomerang artifact [Späth et al. 2016], adopting
its alias analysis approach for this paper. It is important to note that our IDEDroid approach
is applicable to other existing IFDS-based frameworks like PhASAR [Schubert et al. 2019]. The
essential component of IDEDroid, its efficient CFL-reachability solver described in Section 4.2, is
comprised of approximately 800 lines of Java code and can be readily adapted to other tools.
Following prior research [Arzt 2021; Arzt et al. 2014; He et al. 2019; Lerch et al. 2015; Li et al.

2021], we imposed 𝑘-limiting (default 𝑘 = 5) to control field access lengths and utilize FlowDroid’s
default sources and sinks for the apps evaluated in both tools. This practice of modifying 𝑘 aims to
balance performance and precision, as a higher 𝑘 enhances precision at the expense of performance.
Moreover, IDEDroid introduces a new balance between efficiency and precision by limiting the
number of access strings per base variable, which is by default unlimited.

According to Theorem 1, our CFL-based approach outperforms the traditional access-path-based
approach in precision under the same𝑘-limiting setting. Using 327 unit tests fromBoomerang [Späth
et al. 2016], both IDEDroid and FlowDroid identified identical leaks, as these cases lack the com-
plexity seen in Figure 3. This also confirms the correctness of our IDEDroid implementation.
For a deeper comparison of IDEDroid’s precision and efficiency against FlowDroid, we scruti-
nized 24 major real-world Android apps containing malware apps from Drebin [Arp et al. 2014;
Spreitzenbarth et al. 2013] and benign apps from FossDroid [FossDroid 2023]. Both Drebin and
FossDroid have been heavily utilized for evaluating Android malware detection techniques, as
recent studies [Du et al. 2023; Yang et al. 2018, 2022] demonstrate. Initially, we selected 5 top apps
from each of 17 categories in FossDroid [FossDroid 2023], which has been wildly used in previous
works [He et al. 2023, 2019; Li et al. 2021], resulting in 85 apps. After excluding 53 small apps
(analyzable within 2 minutes), 12 without sources or sinks, and 6 unprocessable due to odexed code,
we chose 14 apps for in-depth analysis. Additionally, from Drebin [Arp et al. 2014; Spreitzenbarth
et al. 2013], 100 apps were chosen randomly, including a range of diverse application categories
like DroidDream, Iconosys, and SMSreg. Eliminating 63 small, quickly analyzed apps, 19 without
sources or sinks, and 8 incompatible with Soot left us with 10 apps for detailed evaluation. We
excluded those small apps where both FlowDroid and IDEDroid can complete the analysis in
seconds because, for these apps, the IFDS solver contributes only a small fraction of the total
analysis time, with the majority spent by Soot loading the APK prior to analysis. Consequently,
the performance differences between FlowDroid and IDEDroid are marginal.

When analyzing an app, we set the timeout budget to 5 hours. All experiments were conducted
on an Intel Core(TM) i5-10210U machine (2.11GHz) with 40 GB of RAM, running Ubuntu 20.04.01.
Table 1 compares IDEDroid and FlowDroid in terms of their performance, averaging results

over five runs per app. Column 1 names the 24 analyzed apps (with Drebin apps anonymized),
and Column 2 shows their abbreviations. Columns 3-8 detail analysis times for FlowDroid and
IDEDroid. For IDEDroid in Column 4 (default setting with unrestricted number of field accesses
maintained per base variable), both analysis time and speedup against FlowDroid are provided.
Columns 5-8, also for IDEDroid, show analysis times and speedups (compared to its default setting)
with field accesses per base variable limited to 10,000, 1,000, 100, and 10. The number of field
accesses per base variable is the size of the set of field access strings (|𝐿 |) to which a base variable
(𝑣 ∈ 𝐷) is mapped. We enforce this restriction in different settings by halting the expansion of
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Table 1. Comparing IDEDroid and FlowDroid in analyzing 24 Apps. FD denotes FlowDroid. ID signifies

IDEDroid, evaluated under five different settings. The default setting for IDEDroid allows unrestricted number

of field accesses per base variable, with variations across 10,000, 1,000, 100, and 10 in the other settings.

Time (s) #Leaks
APP Abbr

FD ID 10000 1000 100 10 FD ID 10000 1000 100 10

2,751.6 2,045.4 440.3 258.5 255.3com.mschlauch.comfortreader CMC >5h 6.5× 1.3× 6.2× 10.6× 10.8× - 25 25 25 21 19
41.3 43.6 39.2 32.4 24.5dk.jens.backup DJB >5h 435.8× 0.9× 1.1× 1.3× 1.7× - 48 48 48 45 45

org.jfedor.frozenbubble OJF OOM OOM OOM 3,714.7 1,709.2 1,729.3 - - - 93 93 93
26.4 25.7 25.7 25.8 26.4deep.ryd.rydplayer DRR >5h 681.8× 1.0× 1.0× 1.0× 1.0× - 4 4 4 4 4

org.icasdri.mather OIM OOM >5h >5h >5h 5,584.1 3,949.1 - - - - 1 1
1,755.9 1,533.4 891.3 740.5 924.8org.billthefarmer.editor OBE >5h 10.3× 1.1× 2.0× 2.4× 1.9× - 11 11 11 10 10

90.8 86.5 84.8 130.1 4.2protect.babymonitor PB >5h 198.2× 1.1× 1.1× 0.7× 21.8× - 1 1 1 1 1
34.0 32.0 30.3 31.0 32.5com.fr3ts0n.ecu.gui.androbd CFEGA >5h 529.4× 1.1× 1.1× 1.1× 1.0× - 10 10 10 9 9
425.8 416.3 399.1 430.7 369.7com.google.zxing.client.android CGZCA 12,741.0 29.9× 1.0× 1.1× 1.0× 1.2× 26 23 23 23 23 23
73.0 65.9 72.0 70.6 70.4org.krita OK 4,312.3 59.1× 1.1× 1.0× 1.0× 1.0× 5 4 4 4 4 4
430.4 422.7 448.3 420.2 426.4org.michaelevans.nightmodeenabler OMN 1,165.6 2.7× 1.0× 1.0× 1.0× 1.0× 1 1 1 1 1 1
4.2 4.0 4.2 4.1 4.1org.dnaq.dialer2 ODD 336.8 80.2× 1.0× 1.0× 1.0× 1.0× 25 25 25 25 25 25
94.3 89.2 96.9 91.8 99.4net.ivpn.client NIC 212.4 2.3× 1.1× 1.0× 1.0× 0.9× 7 7 7 7 7 7
59.2 58.7 59.5 58.4 49.6fr.neamar.kiss FNK 122.3 2.1× 1.0× 1.0× 1.0× 1.2× 13 13 13 13 13 13
208.8 164.6 155.8 161.1 159.4DroidDream-76e8 DroidDream >5h 86.2× 1.3× 1.3× 1.3× 1.3× - 28 28 28 28 28
82.3 90.9 87.4 96.5 84.0Iconosys-15ae Iconosys >5h 218.8× 0.9× 0.9× 0.9× 1.0× - 76 76 76 78 76

1,377.8 1,303.4 1,255.9 1,258.8 1,256.6Plankton-0320 Plankton >5h 13.1× 1.1× 1.1× 1.1× 1.1× - 151 151 147 147 147
7.6 7.7 7.7 6.9 6.4SMSreg-46e4 SMSreg >5h 2, 368.4× 1.0× 1.0× 1.1× 1.2× - 15 15 15 15 15

246.3 241.0 154.4 124.7 104.9SendPay-99ed SendPay 7,012.3 28.5× 1.0× 1.6× 2.0× 2.3× 120 120 121 119 120 95
240.9 181.7 154.5 130.0 157.3Adrd-9f73 Adrd 3,067.0 12.7× 1.3× 1.6× 1.9× 1.5× 6 6 6 6 6 6
19.1 18.6 18.2 18.3 19.6DroidKungFu-191b DroidKungFu 1,280.0 67.0× 1.0× 1.0× 1.0× 1.0× 3 3 3 3 3 3
34.0 35.2 40.4 49.8 42.4BaseBridge-04ef BaseBridge 1,186.6 34.9× 1.0× 0.8× 0.7× 0.8× 13 13 13 13 13 13
48.0 42.4 53.1 36.4 48.3Geinimi-6902 Geinimi 509.0 10.6× 1.1× 0.9× 1.3× 1.0× 21 18 18 18 18 18
23.1 23.5 24.2 22.0 21.1FakeDoc-b3a8 FakeDoc 147.9 6.4× 1.0× 1.0× 1.1× 1.1× 26 25 25 25 25 25

lattice 𝐿 at distinct set limits. The last six columns record leaks detected by both tools under all
settings, highlighting their leak detection capabilities.

5.2 RQ1: Efficiency Improvement

IDEDroid significantly outperforms FlowDroid in terms of efficiency and also consumes less
memory, as detailed in Table 1 and Figure 9. We initially focus on the efficiency and memory usage
benefits of IDEDroid, followed by an analysis of the underlying reasons for these advantages.

5.2.1 Speedups. In the case of OJF and OIM, both FlowDroid and IDEDroid (in its default setting)
failed to complete their analysis due to memory constraints or exceeding the 5-hour time limit.
However, for the remaining 22 apps, as indicated in Columns 3-4 of Table 1, IDEDroid significantly
outperforms FlowDroid, achieving speedups ranging from 2.1× (FNK) to an impressive 2, 368.4×
(SMSreg), with an average speedup of 222.0×. It is worth emphasizing that IDEDroid was able to
analyze 10 more apps than FlowDroid (e.g., CMC and DJB) within the 5-hour limit.

For the 10 apps that FlowDroid could not analyze, we conservatively estimated its analysis time
at 5 hours each, implying IDEDroid’s actual speedups could be higher. Remarkably, IDEDroid
analyzed SMSreg in only 7.6 seconds, a task that FlowDroid could not complete in 5 hours.

Apps with moderate speedups, such as FNK (2.1x) and NIC (2.3x), had shorter analysis times with
IDEDroid, completing in 59.2 and 94.3 seconds respectively.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 364. Publication date: October 2024.



Boosting the Performance of Alias-Aware IFDS Analysis with CFL-Based Environment Transformers 364:19

Fig. 9. Comparing IDEDroid and FlowDroid (in its default setting) in terms of memory consumed. ⊗ indicates

apps where FlowDroid either timed out or exhausted memory resources.

Fig. 10. The ratio of the data-flow facts processed by FlowDroid over that of IDEDroid.

5.2.2 Memory Usage. Figure 9 illustrates the memory consumption comparison between IDEDroid
(in its default setting) and FlowDroid, excluding the two apps, OJF and OIM, where both tools failed
to complete within the 5-hour time frame. Consistently, IDEDroid demonstrated lower memory
usage than FlowDroid. The ratio of FlowDroid’s memory consumption to that of IDEDroid
varied, ranging from 1.1× for CGZCA to as high as 7.4× for BaseBridge, averaging at about 3.6×.

5.2.3 Analysis. In Section 2.2, we highlighted three key benefits of our CFL-based approach over the
traditional access-path-based approach for enforcing field-sensitivity in the IFDS/IDE framework:
(1) a smaller data-flow fact domain, (2) less propagation of data-flow facts, and (3) fewer alias
queries. We will now provide experimental evidence demonstrating how these benefits lead to the
observed enhancements in IDEDroid’s performance and memory usage.
Data-flow Fact Domain. As discussed in Section 1, the time and space complexities of alias-aware
IFDS/IDE algorithms are mainly driven by the data-flow facts processed. FlowDroid represents
these facts using explicit access paths, whereas IDEDroid focuses solely on base variables. For the
12 apps that FlowDroid could analyze, Figure 10 shows that, on average, FlowDroid processes
5.3× more facts than IDEDroid, peaking at 9.3× for CGZCA.
Taint Propagation. In the IFDS/IDE framework, data-flow fact propagation is typically measured
by the total path and summary edges processed. For the 12 apps that FlowDroid could analyze, as
Table 2 illustrates, FlowDroid processed considerably more edges than IDEDroid: 10.8× more
path edges (with a maximum of 18.1×) and 18.1× more summary edges (reaching up to 30.9×).

IDEDroid’s CFL-based approach combines field accesses of a base variable for joint propagation
in jump function calculations, thereby minimizing taint propagation. Conversely, FlowDroid’s
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Table 2. Comparing IDEDroid and FlowDroid on the number of path edges, summary edges and the number

of alias queries processed. FD denotes FlowDroid while ID denotes IDEDroid.

APP

# Path Edges # Summary Edges # Alias Queries

FD ID FD ID FD ID
CGZCA 2,089,762 149,864 13.9× 100,900 4,555 22.2× 3,003 940 3.2×
OK 169,349 41,936 4.0× 5,583 1,139 4.9× 1,296 276 4.7×
OMN 6,223 69,201 0.1× 435 866 0.5× 130 116 1.1×
ODD 120,237 7,992 15.0× 23,364 757 30.9× 690 97 7.1×
NIC 199,452 28,428 7.0× 10,487 970 10.8× 457 183 2.5×
FNK 158,504 30,603 5.2× 9,804 1,301 7.5× 513 272 1.9×
Adrd 88,151 4,879 18.1× 4,475 339 13.2× 1,033 25 41.3×
SendPay 5,535,378 1,824,110 3.0× 26,535 6,801 3.9× 3,722 1,271 2.9×
DroidKungFu 37,460 5,139 7.3× 1,685 224 7.5× 454 49 9.3×
BaseBridge 54,432 21,243 2.6× 3,006 1,397 2.2× 537 114 4.7×
Geinimi 125,738 62,622 2.0× 6,493 2,424 2.7× 455 220 2.1×
FakeDoc 696,315 140,061 5.0× 13,080 2,601 5.0× 1174 626 1.9×
Average 773,417 198,840 10.8× 17,154 1,948 18.1× 1,122 349 10.1×

access-path approach results in more path and summary edges. The application of 𝑘-limiting to
access paths in FlowDroid also contributes to unnecessary propagation of spuriously tainted
access paths. IDEDroid addresses this limitation by applying CFL-reachability in function summary
computations (as motivated in Section 3.3), which substantially reduces these edges, improves
performance relative to FlowDroid, and enhances precision, as will be described in Section 5.3.
Alias Queries. In the access-path-based approach, each access path newly tainted at the same
field store triggers a separate alias query, even when they share the same base variable, leading to
numerous redundant queries. Conversely, IDEDroid’s CFL-based approach, by compactly encoding
multiple access paths for a single base variable, generates just one alias query per store. As a result,
FlowDroid ends up issuing 10.1× more alias queries than IDEDroid, reaching 41.3× for Adrd.

5.3 RQ2: Precision Improvement

Theoretically, IDEDroid surpasses FlowDroid in precision, as delineated in Theorem 1. In practical
scenarios, IDEDroid demonstrates enhanced precision over FlowDroid for certain apps. Among
the 12 apps FlowDroid managed to analyze within a 5-hour frame (Table 1), IDEDroid exhibited
notable precision improvements in four apps: OK by 20.0%, Geinimi by 14.3%, CGZCA by 11.5%, and
FakeDoc by 3.8%. For the remaining 8 apps, both tools identified the same leaks, culminating in an
average precision uplift of 4.1% for the 12 apps.
IDEDroid has effectively eliminated a total of eight false positives reported by FlowDroid:

1 in OK, 3 in Geinimi, 3 in CGZCA, and 1 in FakeDoc. The last ten apps mentioned in Table 1
from Drebin had their source code unavailable, necessitating a manual examination of their
Jimple IR. In Geinimi, IDEDroid eliminated three false positives in the run() method of class
com.admob.android.ads.AdView$a and an obfuscated method b() in class com.admob.android.
ads.AdManager. These leaks trace back to a single callback source, the setBackgroundColor(int)
method in class com.admob.android.ads.AdView. The related sinks, v(String,String) (appear-
ing twice), and d(String,String), are located in the class android.util.Log. In FakeDoc, IDE-
Droid removed a false positive flowing from a source to a sink in onCreate(android.os.Bundle)
of class com.itframework.installer.util.InstallNonMarketFromUrlActivity. For OK, IDE-
Droid avoided one false positive in the startApp(boolean)method of class org.qtproject.qt5.
android.bindings.QtLoader from a callback source. For CGZCA, IDEDroid eliminated three
false positives in the initFromCameraParameters()method of class com.google.zxing.client.
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Table 3. Comparing IDEDroid and FlowDroid with 𝑘 ranging from 1 to 4 under k-limiting. FD denotes

FlowDroid while ID denotes IDEDroid.

Time (s) #Leaks

k=1 k=2 k=3 k=4 k=1 k=2 k=3 k=4APP

FD ID FD ID FD ID FD ID FD ID FD ID FD ID FD ID

CGZCA 1443.4 229.8
6.3× 1741.3 237.3

7.3× 3223.1 282.3
11.4× 7885.1 275.8

28.6× 48 46 31 24 26 23 26 23

OK 828.3 71.6
11.6× 1373.1 72.4

19.0× 2099.9 78.7
26.7× 3319.9 71.2

46.6× 5 4 5 4 5 4 5 4

OMN 1529.5 447.8
3.4× 1538.3 460.8

3.3× 924.7 450.4
2.1× 1120.8 432.9

2.6× 1 1 1 1 1 1 1 1

ODD 32.6 4.2
7.8× 142 4.2

33.8× 240.9 4.0
60.2× 264.3 4.3

61.5× 25 25 25 25 25 25 25 25

NIC 253.1 134.2
1.9× 217.3 104.7

2.1× 202.7 107.6
1.9× 208.6 116.5

1.8× 11 10 7 7 7 7 7 7

FNK 90.6 80.1
1.1× 132.9 59.5

2.2× 126.7 71.6
1.8× 135.6 57.4

2.4× 13 13 13 13 13 13 13 13

SendPay 178.9 124.9
1.4× 240.1 123.8

1.9× 480 117.6
4.1× 1093.5 142.4

7.7× 123 123 120 120 120 120 120 120

Adrd 4614.7 777.4
5.9× 3708.7 1496.6

2.5× >5h 151.2
119.0× 5121 499.9

10.2× 6 6 6 6 - 6 6 6

DroidKungFu 148.8 18.1
8.2× 86.8 19.2

4.5× 208.6 19.0
11.0× 594.1 17.8

33.4× 3 3 3 3 3 3 3 3

BaseBridge 523.7 38
13.8× 1016.5 34.3

29.6× 1463.1 33.9
43.2× 1275.1 35.8

35.6× 14 14 13 13 13 13 13 13

Geinimi 590.73 35.9
16.5× 418.8 73.3

5.7× 265.8 41.2
6.5× 649.7 48.1

13.5× 25 23 21 18 21 18 21 18

FakeDoc 40.1 21.5
1.9× 56.1 23.1

2.4× 139.5 23.6
5.9× 155.5 27.1

5.7× 26 25 26 25 26 25 26 25

android.camera.CameraConfigurationManager from three separate sources: onResume() in
class com.google.zxing.client.android.CaptureActivity, buildHistoryItems() in class
com.google.zxing.client.android.history.HistoryManager, and buildHistoryItem(int)
in class com.google.zxing.client.android.history.HistoryManager.
In industry settings, reducing false positives even marginally is crucial. Such improvements

in taint analysis tools like IDEDroid can significantly enhance software development efficiency,
allowing developers to focus on genuine issues rather than spending time on non-existent problems.
The precision enhancements observed in four apps are attributed to a distinct code pattern

illustrated in Figure 3. Additionally, in the pattern “x = source(); x.f = sanitize(); y = x.f;
sink(y)”, FlowDroid and tools using a similar access-path-based method will mistakenly report
a false positive at the sink because they mark x.f∗ as tainted right from the source. In contrast,
IDEDroid avoids this false positive by precisely tracking that only 𝜖 is carried along the path and
correctly identifying the sanitization at x.f. Yet, it is important to note that IDEDroid has not
dismissed any false positives reported by FlowDroid for this specific pattern in our evaluation.

As discussed in Sections 3.3 and 4.2, IDEDroid employs CFL-reachability for function summary
computations. This approach circumvents the imprecision typical of FlowDroid’s access-path-
based abstraction, thus highlighting IDEDroid’s enhanced precision (along with its efficiency) over
FlowDroid, under 𝑘-limiting using the same 𝑘 value.

5.4 RQ3: Efficiency and Precision Tradeoffs

IDEDroid offers two strategies for balancing precision and efficiency: 𝑘-limiting to cap field access
lengths and limiting the number of field access strings per base variable.
Limiting Field Access Lengths. Applying 𝑘-limiting, FlowDroid caps access path lengths at 𝑘 ,
whereas IDEDroid equivalently limits store and load labels in a field access string to 𝑘 (Section 4.2.3).
Table 3 shows performance and precision comparisons between both tools under varying 𝑘-limiting
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Fig. 11. The time spent by Phase I against the time spent by Phase II in IDEDroid.

values (𝑘 = 1, 2, 3, 4), focusing on 12 apps FlowDroid scaled with under 5-limiting (Table 1). In all
scenarios, IDEDroid surpasses FlowDroid. With 𝑘 = 1, speedups range from 1.1× (FNK) to 16.5×
(Geinimi), averaging 6.6×. At 𝑘 = 2, speedups vary from 1.9× (SendPay) to 33.8× (ODD), with an
average of 9.5×. For 𝑘 = 3 and 𝑘 = 4, improvements continue, with speedups between 1.8× (FNK) to
119.0× (Adrd) and 1.8× (NIC) to 61.5× (ODD) respectively, and average speedups of 24.5× and 20.8×.

Precision-wise, IDEDroid matches or exceeds FlowDroid across all 𝑘 values, with precision
naturally enhancing as 𝑘 grows for both FlowDroid and IDEDroid. However, the IFDS perfor-
mance varies widely with 𝑘 , affected by changes in the number of access paths maintained and
propagated. For CGZCA, OK, ODD, SendPay, and FakeDoc, FlowDroid performs significantly better
with 𝑘 increases, not applying to the other seven apps. Specifically, FlowDroid struggles under
3-limiting with Adrd, unable to finish within 5 hours, a contrast to its capability at 𝑘 ∈ {1, 2, 4} due
to the cost of managing numerous, often unnecessary, access paths. Conversely, IDEDroid’s per-
formance remains stable across 𝑘 variations, as its base variable domain remains largely unchanged
with different 𝑘 settings.

Limiting FieldAccesses Per BaseVariable. IDEDroid offers an alternative strategy for enhancing
efficiency and precision by capping field accesses per base variable, typically unrestricted. This
aspect is a key feature of our approach, achieved by halting the expansion of lattice 𝐿 in our IDE
formulation at a set limit, as described in Section 4.2.3. Practically, this limit is seldom reached for
most base variables. Although this could marginally affect soundness by not tracking every field
access, it significantly boosts performance with minimal impact on leak detection capabilities.
We evaluated four variants of IDEDroid- IDEDroid10000, IDEDroid1000, IDEDroid100, and

IDEDroid10, limiting field accesses per base variable to 10,000, 1,000, 100, and 10, respectively. Their
efficiency and precision are provided in Columns 5-8 and 11-14 of Table 1, using IDEDroid as the
baseline for computing their speedups. IDEDroid1000 analyzed one additional app, OJF, in 3,714.7
seconds, which IDEDroid could not. IDEDroid100 managed to analyze both OJF and OIM (which
IDEDroid failed) in 1,709.2 and 5,584.1 seconds, respectively. The precision for most apps (16 out of
22 that IDEDroid could analyze) remains unchanged even for IDEDroid100 and IDEDroid10. For
these 22 apps, average speedups of IDEDroid10000, IDEDroid1000, IDEDroid100, and IDEDroid10
over IDEDroid are 1.1×, 1.5×, 1.9×, and 2.8×, respectively, with maximum speedups being 1.3×
(CMC), 6.2× (CMC), 10.6× (CMC), and 21.8× (PB) as shown in Columns 5-8 of Table 1.

Let us explore the efficiency and precision tradeoffs shown by different versions of IDEDroid.
In most Android apps, classes usually possess few fields, translating into a small number of field
accesses for each base variable. This is further diminished by 𝑘-limiting. As a result, in apps where
the data-flow facts excluded due to the cap on the number of field accesses per base variable are
minimal, the impact on IDEDroid’s performance and precision is often negligible.
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5.5 RQ4: Performance of IDEDroid’s Two Phases

Like other IDE-based analyses, IDEDroid operates in two phases: Phase I and Phase II. For taint
analysis, IDEDroid symbolically computes field accesses in Phase I by calculating jump functions
and then actualizes these field accesses as access paths in Phase II, which can be resource-intensive.
We assessed the efficiency of both phases, with Figure 11 displaying their percentage contributions
to IDEDroid’s total analysis time for the 22 apps IDEDroid could analyze, averaging at 93.7% for
Phase I and 6.3% for Phase II. Generally, Phase II takes considerably less time compared to Phase
I, with it finishing in under 10 seconds for 19 apps. This underscores that Phase I is typically the
more complex phase in IDE-based analysis, as noted in [Sagiv et al. 1996]. However, Phase II can
be demanding in specific cases, such as accounting for 80.1% of the analysis time for CMC.
Importantly, IDEDroid optimizes Phase I by focusing on base variables, significantly reduc-

ing unnecessary access path propagation. This is crucial for IDEDroid’s improved performance
compared to FlowDroid, illustrating that the additional Phase II introduces only a slight overhead.

6 Related Work

In this section, we review the previous works that are closely related to this research.

6.1 Field Sensitivity Models

Field-sensitivity is vital for precise static program analysis, primarily addressed through store-
less and store-based models [Kanvar and Khedker 2016]. Storeless models perceive the heap as
access paths comprising a base variable, followed by some field accesses. Unchecked, these paths
risk algorithm non-termination. To counter this, size-limiting strategies have been developed.
𝑘-limiting [Arzt et al. 2014; De and D’Souza 2012; He et al. 2019; Landi and Ryder 1992; Tripp
et al. 2013] controls the number of field accesses per access path. Regular-expression-based meth-
ods [Deutsch 1994; Khedker et al. 2007; Lerch et al. 2015; Matosevic and Abdelrahman 2012] replace
field accesses with regular expressions. Logic-based approaches [Bozga et al. 2004; Kuncak et al.
2006; Lam et al. 2005; Møller and Schwartzbach 2001] utilize logical expressions. These solutions
provide different levels of abstraction to maintain analysis precision and practicality.

6.2 The IFDS/IDE Framework

The IFDS/IDE framework, widely used in program optimization, verification, and security, was
pioneered by [Reps et al. 1995] for solving inter-procedural, finite, subset problems and extended
by Sagiv et al. [1996] to tackle inter-procedural distributed environment (IDE) issues using symbol-
to-value data-flow mappings. Enhancements by Naeem et al. [2010] have been adopted in popular
frameworks like WALA [IBM 2006], Soot [Lam et al. 2011], and LLVM [Lattner and Adve 2004].
Several orthogonal optimization techniques have been developed to enhance IFDS/IDE perfor-

mance. Bodden [2012] developed a multi-threaded solver in Soot, and Schubert et al. [2019] created
a specialized solver for C/C++ in LLVM. He et al. [2019] introduced an optimization using sparse
propagation of data-flow facts, improving performance and memory efficiency. Li et al. [2021]
enhanced IFDS scalability by removing inaccessible path edges and managing memory usage. Arzt
[2021] and He et al. [2023] focused on efficient garbage collection methods. Wang et al. [2023]
proposed a parallel IFDS algorithm with a streaming-based, out-of-core computation, while Gui
et al. [2023] optimized IFDS-based taint analysis by merging equivalent value flows. Conrado et al.
[2023] accelerated Phase II in IDE by exploiting structural sparsity properties of control-flow graphs
and call graphs to enhance querying performance from a source point to a sink point. This approach
can be adopted to further improve the performance of Phase II in IDEDroid.
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IFDS-APA [Lerch et al. 2015] boosts efficiency by bundling access paths with identical base
variables, which are later disaggregated for precision, achieving a modest average speedup of
2.1× over FlowDroid under 5-limiting [Lerch et al. 2015][Table 4.3]. In contrast, our IDEDroid
approach achieves an average speedup of 222.0×. IDEDroid was not compared with IFDS-APA due
to its absence in FlowDroid or Heros [Bodden 2012] and the lack of an accessible implementation.

Taint analysis, crucial for detecting unauthorized information flows, is a key component in various
security assessment tools. In Android security analysis, numerous tools have been developed [Arzt
et al. 2014; Cai and Jenkins 2018; Gordon et al. 2015; Klieber et al. 2014; Li et al. 2015; Wei et al. 2014],
with FlowDroid standing out as a leading solution [Pauck et al. 2018]. This paper introduces a
CFL-based heap abstraction for field-sensitivity, seamlessly integrated into an alias-aware IFDS/IDE
framework through encoding in IDE’s edge functions. We have implemented this abstraction in
IDEDroid, a new taint analysis tool, which significantly enhances the performance of FlowDroid.

6.3 CFL-reachability

Originally introduced for database theory [Yannakakis 1990], CFL-reachability has become a key
framework for various program analysis issues [Reps 1998], such as pointer analysis [Sridharan
and Bodík 2006; Sridharan et al. 2005; Zheng and Rugina 2008], program slicing [Reps et al. 1994;
Sridharan et al. 2007], data-flow analysis [Arzt et al. 2014], and shape analysis [Reps 1998]. The
IFDS/IDE framework, in fact, is an implementation of CFL-reachability, modeling context sensitivity
via extended Dyck-CFL reachability [Kodumal and Aiken 2004; Shi et al. 2022].

CFL-reachability has seen extensive advancements in recent years, including transitive redun-
dancy elimination [Lei et al. 2022], multi-derivation [Shi et al. 2023, 2024], offline graph simplifi-
cation [Lei et al. 2023; Li et al. 2022b], disk-based computation methods [Wang et al. 2017], and
efficient algorithms for (Bidirected) Dyck-CFL reachability [Chatterjee et al. 2017; Li et al. 2022a;
Zhang et al. 2013]. Our research contributes to this field by framing field sensitivity as a CFL-
reachability problem (involving partially matched parentheses) and addressing it during jump
function calculations in the IDE framework.

Our study relates to the interleaved CFL-reachability issue, where multiple CFL-reachability cases
jointly model program behavior. Field- and context-sensitivity in CFL-based analyses are often
depicted by two interleaved CFLs. However, fully integrating these sensitivities in data-flow analysis
is undecidable [Reps 2000], leading to the development of practical approximation techniques.
Recent progress includes Zhang and Su’s work [Zhang and Su 2017] using linear conjunctive

language (LCL) for interleaved Dyck-CFL problems and a corresponding LCL-reachability approxi-
mation algorithm. The concept of synchronized pushdown systems (SPDS) [Späth et al. 2019] also
plays a role, combining results from two separate pushdown systems for reachability analysis.
Our work contributes a novel angle by elevating field-sensitive IFDS-based data-flow analysis

to an IDE problem. Here, context-sensitivity is naturally embedded within the IDE algorithm,
and field-sensitivity is integrated through a CFL, employing 𝑘-limiting to maintain decidability.
Meantime, existing CFL-based alias analyses [Lu and Xue 2019; Shang et al. 2012; Sridharan and
Bodík 2006; Xu et al. 2009; Zheng and Rugina 2008] are context- and field-sensitive but flow-
insensitive, utilizing a pointer assignment graph as the underlying labeled graph. In contrast, our
CFL-reachability analysis operates within an IFDS-based taint analysis framework and introduces
two significant differences: (1) our CFL formulation is not only fully context- and field-sensitive
but also flow-sensitive and considers kill operations, and (2) it employs CFL-based transformers
with linear or constant time complexity at each step to propagate tainted base variables, while
traditional CFL analyses iteratively compute reachable paths until a fixed point is achieved.
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7 Conclusion

We have developed a novel field-sensitive approach that reconceptualizes access path creation into
a CFL and frames it as an IDE problem. By modeling field accesses through a CFL-reachability
approach, resolved during jump function computation within the IDE framework, we achieve both
performance and precision improvements over the traditional access-path-based approach.

Performance-wise, our technique significantly decreases the domain of data-flow facts, leading
to fewer path edges, summary edges processed, and alias queries. As a result, IDEDroid, leveraging
our CFL-based approach for field-sensitivity, demonstrates superior performance and improved
precision compared to FlowDroid, which uses access paths for field-sensitivity.
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