
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

PEARL: A Multi-Derivation Approach to Efficient
CFL-Reachability Solving

Chenghang Shi, Haofeng Li, Yulei Sui, Jie Lu, Lian Li, and Jingling Xue

Abstract—Context-free language (CFL) reachability is a fundamental framework for formulating program analyses. CFL-reachability
analysis works on top of an edge-labeled graph by deriving reachability relations and adding them as labeled edges to the graph.
Existing CFL-reachability algorithms typically adopt a single-reachability relation derivation (SRD) strategy, i.e., one reachability relation
is derived at a time. Unfortunately, this strategy can lead to redundancy, hindering the efficiency of the analysis.
To address this problem, this paper proposes PEARL, a multi-derivation approach that reduces derivation redundancy for
CFL-reachability solving, which significantly improves the efficiency of CFL-reachability analysis. Our key insight is that multiple edges
can be simultaneously derived via batch propagation of reachability relations. We also tailor our multi-derivation approach to tackle
transitive relations that frequently arise when solving CFL-reachability. Specifically, we present a highly efficient transitive-aware
variant, PEARLPG, which enhances PEARL with propagation graphs, a lightweight but effective graph representation, to further diminish
redundant derivations. We evaluate the performance of our approach on two clients, i.e., context-sensitive value-flow analysis and
field-sensitive alias analysis for C/C++. By eliminating a large amount of redundancy, our approach outperforms two baselines
including the standard CFL-reachability algorithm and a state-of-the-art solver POCR specialized for fast transitivity solving. In
particular, the empirical results demonstrate that, for value-flow analysis and alias analysis respectively, PEARLPG runs 3.09× faster on
average (up to 4.44×) and 2.25× faster on average (up to 3.31×) than POCR, while also consuming less memory.

Index Terms—Program analysis, CFL-reachability, constraint solving, transitive relations

✦

1 INTRODUCTION

Many program analysis problems, such as interprocedural
data flow analysis [1], [2], program slicing [3], [4], [5], shape
analysis [6], and pointer analysis [7], [8], [9], [10], [11], [12],
[13], [14] can be formulated as context-free language (CFL)
reachability problems [15]. The CFL-reachability problem
extends standard graph reachability to an edge-labeled
graph, where Node v is CFL-reachable from Node u if there
exists a path from u to v whose edge labels follow a pre-
defined context-free grammar (CFG). Despite its wide appli-
cability, it is well-known that the CFL-reachability solving
algorithm has a (sub)cubic time complexity with respect
to the number of nodes in the edge-labeled graph [16].
Researchers have developed different performance opti-
mization techniques, including simplifying the graph size
via pre-processing [17], [18], [19], applying summary-based
techniques for caching [1], [3], [20], and adopting efficient
data processing techniques to improve scalability [21], [22].
However, despite all these efforts, CFL-reachability algo-
rithms can still suffer from significant performance loss due
to derivation redundancy.

During CFL-reachability solving, an X-reachability re-
lation between source node u and sink node v (i.e., v is
X-reachable from u) is explicitly represented as an X-edge

• Chenghang Shi, Haofeng Li, Jie Lu, and Lian Li are with SKLP, Institute
of Computing Technology, CAS, China. Yulei Sui and Jingling Xue are
with University of New South Wales, Australia. Chenghang Shi and Lian
Li are also with University of Chinese Academy of Sciences, China. Lian
Li is also with Zhongguancun Laboratory, China. Lian Li and Haofeng Li
are the corresponding authors.
E-mail:{shichenghang21s,lihaofeng,lujie,lianli}@ict.ac.cn,
{y.sui,j.xue}@unsw.edu.au.

u
X−→ v in the edge-labeled graph. We use the terms X-

edge and X-reachability relation interchangeably, and they
are both denoted as u X−→ v. Essentially, the edge derivation
process of CFL-reachability can be viewed as propagating
reachability relations along the edge-labeled graph until
a fixed point is reached, i.e., no more new reachability
relations can be deduced. During propagation, each newly
derived reachability relation (a source-to-sink path) is sum-
marized as a labeled edge and added to the graph, making
this reachability relation explicit.

Derivation Redundancy. Existing CFL-reachability algo-
rithms commonly employ a single-reachability relation
derivation (SRD or single-derivation) strategy, i.e., one
reachability relation is derived at a time. However, this
straightforward strategy can lead to considerable derivation
redundancy, hindering the efficiency of the analysis. More-
over, the presence of transitive relations (production rule in
the form A := A A) can introduce additional derivation
redundancies [23], further impacting overall efficiency.

Our Solution. To address this problem, we propose
PEARL, a multi-derivation approach to CFL-reachability anal-
ysis. Our key insight is that multiple edges can be si-
multaneously derived via batch propagation of reachability
relations, thus significantly reducing derivation redundancy
caused by the single-derivation strategy in existing algo-
rithms. In addition, we introduce a simple yet effective
graph representation named propagation graph, to concisely
encode transitive relations which are prevalent in CFL-
based program analyses. Propagation graphs can be com-
bined with multi-derivation to further diminish redundant
derivations due to transitivity (also known as transitive re-
dundancy [23]), and consequently, boost the performance of

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

CFL-reachability solving. This combination leads to a highly
efficient transitive-aware variant, PEARLPG. It is worth not-
ing that a previous work, POCR [23], proposes to eliminate
transitive redundancies by keeping track of the derivation
order for each transitive relation, at the expense of intro-
ducing a spanning tree model. However, this optimization
does not fit our multi-derivation approach and thus is not
adopted in our implementation, as discussed in Section 3.2.

We have evaluated PEARL and PEARLPG using two
popular static analysis clients, context-sensitive value-
flow analysis [24], [25] and field-sensitive alias analy-
sis for C/C++ [9]. Experimental results demonstrate that
our method significantly outperforms existing approaches.
When compared with POCR [23], a state-of-the-art solver
with effective optimizations for transitive redundancies,
PEARLPG runs 3.09× (up to 4.44×) faster for value-flow
analysis and 2.25× (up to 3.31×) faster for alias analysis
over POCR with less consumed memory.

To summarize, this paper makes the following contribu-
tions:

• We propose a multi-derivation approach that utilizes
a batch propagation technique for the rapid deriva-
tion of reachability relations. Our approach elimi-
nates repetitive derivations introduced by the single-
deriviation strategy in existing CFL-reachability al-
gorithms, thereby enhancing the efficiency of CFL-
reachability analysis.

• We introduce propagation graph, a lightweight but
effective graph representation for transitive rela-
tions. Propagation graphs are transitivity-aware sub-
graphs induced from the original edge-labeled graph
on the fly. We have developed efficient algorithms
that combine multi-derivation with propagation
graphs to effectively reduce redundant derivations
caused by transitive relations, which are common in
CFL-based program analyses. The approach demon-
strates promising performance improvements.

• We apply our technique to two popular CFL-based
program analyses: context-sensitive value-flow anal-
ysis and field-sensitive alias analysis. Experimental
results demonstrate that our approach effectively
eliminates a large percentage of derivation redun-
dancy, significantly boosting the performance of
CFL-reachability analysis.

The remainder of this paper is structured as follows.
Section 2 introduces the background. Section 3 briefly il-
lustrates the core idea of our approach with two motivating
examples. We detail our approach in Section 4 and evaluate
our tools PEARL and PEARLPG in Section 5. Section 6 surveys
related work and Section 7 concludes this paper.

Major Extensions. This paper is an extension of the con-
ference paper [26] published in ASE’23. We have made the
following major extensions.

• The multi-derivation algorithm presented in [26] was
initially designed to handle productions related to
transitivity. In this extension, we have expanded its
scope to support general production rules. Conse-
quently, Section 3 and Section 4 have been com-
pletely rewritten to introduce a new multi-derivation
algorithm for CFL-reachability analysis.

• We reformulate our multi-derivation approach from
a constraint-solving perspective (Section 4.1.1) with
formally defined rules (Table 1).

• We introduce a practical optimization technique for
a specific production pattern in the form of X ::=
a Z b, where a and b are terminals. Such kind of
production is present in all existing CFL-based analy-
ses (Section 4.1.3). We have successfully adapted this
optimization to both the standard algorithm and our
multi-derivation algorithm.

• We have added significantly more new empirical
experiments to help understand the practical benefits
of multi-derivation.

2 BACKGROUND

This section briefly reviews the basic background on CFL-
reachability and provides related definitions.

2.1 CFL-reachbility
We start with the basic notations which will be used
throughout the paper. Let CFG = (Σ, N, P, S) be a context-
free grammar, where alphabet Σ is a finite set called the
terminals, N is a finite set, disjoint from Σ, called the
non-terminals, S ∈ N is the start non-terminal, and P
is a set of production rules, each of which is in the form
N ::= (Σ ∪ N)∗. Let G(V,E) be a directed graph, where
V and E are the vertex set and edge set, respectively. Each
edge in G is labeled by a symbol from Σ ∪N , e.g., the edge
u

X−→ v denotes the edge from Node u to Node v labeled by
X . Each path in G defines a word over Σ by concatenating
the labels of the edges on the path in order. A path is an
X-path if its word can be derived from X ∈ N via one or
more productions in P . An X-path u −→ ... −→ v implies that
an X-reachability relation holds between Node u and Node
v (i.e., v is X-reachable from u). CFL-reachability solving is
to make such reachability relation explicit by inserting an
X-edge u

X−→ v into the edge-labeled graph. In this regard,
we use the terms “X-edge” and “X-reachability relation”
interchangeably.

2.2 The Standard Algorithm
In the literature, CFL-reachability is solved by the standard
dynamic programming algorithm [27] given in Algorithm 1.
The algorithm requires the CFG to be normalized in such
a way that the right-hand side of each production has
at most two symbols, i.e., productions are in the form
X ::= Y Z, X ::= Y or X ::= ε. Additionally, we
introduced an optimization to directly process Dyck-style
productions X ::= a Y b without normalization. This op-
timizatin is highlighted in Lines 26-29 and its effectiveness
will be further discussed in Section 4.1.3. Let W denote a
worklist. Algorithm 1 first initializes the worklist with all
original edges in the input graph (Line 5) and then adds
all self-referencing edges (v X−→ v) produced by empty
productions X ::= ε into the graph and worklist (Lines 6-9).

Next, the procedure Solve is invoked to iteratively
derive new edges until no more edges can be deduced
(W = ∅). Given an edge u

Y−→ v, the four loops in procedure

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

HandleItem at Line 15, Line 18, Line 22, and Line 26
introduce new edges according to the four distinct forms
of production rules X ::= Y , X ::= Y Z, X ::= Z Y , and
X ::= a Y b, respectively. Specifically, each edge u

Y−→ v

induces an edge u
X−→ v by the production rule X := Y

(Lines 15 - 17). In addition, each outgoing Z-edge of Node v
(Lines 18 - 21) and incoming Z-edge (Lines 22 - 25) of Node
u is examined to derive new X edges via the productions
X ::= Y Z and X ::= Z Y , respectively. At last, each
pair of incoming a-edge of Node u and outgoing b-edge of
Node v derives a new X edge according to the production
X ::= a Y b (Lines 26-29). All newly derived edges are
added to the graph and the worklist for further processing.

As can be seen, the standard algorithm exhibits a single-
reachability relation derivation style, i.e., each reachability
relation (e.g., u Y−→ v) of Node v is handled separately in
distinct iterations (Line 12).

2.3 Graph Representation
In CFL-reachability, edge-labeled graphs are typically real-
ized by storing labeled edges in adjacency lists [16]. Given
an X-edge u

X−→ v, we say Node u is an X-predecessor
of Node v, and Node v is an X-successor of Node u.
Consequently, the X-predecessor set of Node v, denoted as
R(X, v) = { u | u X−→ v ∈ E }, represents all incoming
X-edges of Node v (used at Line 23 in Algorithm 1), and
the X-successor set of Node v, denoted as S(X, v) = { u |
v

X−→ u ∈ E }, represents all outgoing X-edges of Node
v (used at Line 19 in Algorithm 1). Specifically, the X-
predecessor set of Node v is also called the X-reachability
relation set of Node v.

In practice, the predecessor/successor sets can be im-
plemented by hash tables (e.g., std::unordered_set in
C++ standard template library) with O(1) amortized time
complexity for insertion and lookup operations [28].

2.4 Transitive Production Rules
This subsection provides definitions related to transitivity.
Transitive relations (manifest in fully and partially transitive
productions) are ubiquitous in CFL-based analyses, often
introduced to model data flow or control flows.

Definition 1. (Fully Transitive Production). A fully transitive
production is in the form A ::= AA. Relation A is a fully
transitive relation if and only if it is in a fully transitive
production.

Definition 2. (Partially Transitive Production). A left (right)
transitive production is in the form X ::= XA (X ::= AX)
where relation A is fully transitive and X ̸= A. A partially
transitive production is either left transitive or right transitive.

Relation X is a partially transitive relation if and only if
it is on the left side of a partially transitive production.
Accordingly, edges of fully (partially) transitive relations are
called fully (partially) transitive edges. We classify fully tran-
sitive edges into two categories [23] by the first production
that generates it:

• Secondary edge. A fully transitive edge is a secondary
edge if it is first derived via a fully transitive produc-
tion;

Algorithm 1: The standard CFL-reachability algo-
rithm

Input: Normalized CFG = (Σ, N, P, S),
edge-labeled directed graph G = (V,E)

Output: all reachable pairs in G
1 Function StdCFL(P , G):
2 Init();
3 Solve(P , G);

4 Procedure Init():
5 add E to W ;
6 for each production X ::= ε ∈ P do
7 for each node v ∈ V do

8 if v X−→ v /∈ E then

9 add v
X−→ v to E and W ;

10 Procedure Solve(P , G):
11 while W ̸= ∅ do

12 pop an edge u
Y−→ v from W ;

13 HandleItem(P , G, u Y−→ v);

14 Procedure HandleItem(P , G, u Y−→ v):
15 for each production X ::= Y ∈ P do

16 if u X−→ v /∈ E then

17 add u
X−→ v to E and W ;

18 for each production X ::= YZ ∈ P do

19 for outgoing edge v Z−→ w from node v do

20 if u X−→ w /∈ E then

21 add u
X−→ w to E and W ;

22 for each production X ::= ZY ∈ P do

23 for incoming edge w Z−→ u to node u do

24 if w X−→ v /∈ E then

25 add w
X−→ v to E and W ;

26 for each production X ::= aY b ∈ P do

27 for each pair of edges w a−→ u and v
b−→ w′ do

28 if w X−→ w ′ /∈ E then

29 add w
X−→ w′ to E and W ;

• Primary edge. A fully transitive edge is a primary
edge if it is first derived via a production that is not
fully transitive.

For convenience, fully transitive relations (edges) and par-
tially transitive relations (edges) are collectively denoted as
transitive relations (edges).

Definition 3. (Transitive Production Rule). A transitive pro-
duction rule is either fully transitive or partially transitive.
Accordingly, other production rules are defined as non-
transitive production rules.

Transitive production rules have a nice property, e.g.,
production X ::= XA suggests that X-reachability relations

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

X ::= a b
Y ::= X c

(a) A context-free grammar

2

0

1

3 4

a

a

b c

(b) The edge-labeled graph

2

0

1

3 4

a

a

b c

X
Y

X
Y

(c) The single-reachability relation deriva-
tion manner. 0 a−→ 2 and 1

a−→ 2 are separately
propagated to Nodes 3 and 4. The dashed
lines and curvy lines show the propagation
processes of 0 X−→ 2 and 1

X−→ 2, respectively.
There are four propagations in total.

2

{0, 1}

3 4

a

b c

X
Y

(d) Our multi-derivation approach.
0

X−→ 2 and 1
X−→ 2 are

packed and propagated together
to Nodes 3 and 4. The dashed
lines denote the derived edges via
the two propagations.

Fig. 1: A motivating example to show the derivation redundancy due to the single-reachability derivation style.

can be propagated via A-edges while preserving their edge
label X .

3 PEARL IN A NUTSHELL

In this section, we briefly illustrate our multi-derivation ap-
proach with a motivating example. Then we show how
to optimize CFL-reachability solving for transitive relations
that frequently arise in CFL-based program analyses, by
equipping multi-derivation with propagation graph represen-
tation.

3.1 The Multi-derivation Approach
Figure 1a gives an example context-free grammar (CFG),
consisting of the two productions X ::= a b and Y ::= X c.
The input edge-labeled graph G , shown in Figure 1b,
contains four edges and five nodes. In CFL-reachability
solving, new reachability relations (edges) are derived via
the propagation of old reachability relations (edges) until a
fixed point. For instance, the production X ::= a b suggests
that an a-edge u

a−→ v and a b-edge v
b−→ w together can

derive an X-edge u
X−→ w. From another perspective, by

propagating the relation u
a−→ v along the edge v

b−→ w, we
obtain a new relation u

X−→ w.
Single-derivation. The single-reachability derivation

(SRD) strategy, as exemplified in Algorithm 1, is commonly
employed in existing approaches. This strategy deduces
only one reachability relation in one propagation step. For
instance, given the production X ::= a b and the two edges
0

a−→ 2 and 2
b−→ 3, a new relation 0

X−→ 3 will be derived
and introduced into the graph. Moreover, since we have
Y ::= X c, propagating the newly generated relation 0

X−→ 3

along the edge 3 c−→ 4 results in another new relation 0
Y−→ 4.

The above two newly derived relations, 0 X−→ 3 and 0
Y−→ 4,

are summarized as dashed lines in Figure 1c. Similarly, the
propagation of 1

a−→ 2 from Node 2 to Node 4 generates
the two relations 1

X−→ 3 and 1
Y−→ 4, as highlighted by the

curvy lines in Figure 1c.
Multi-derivation. In the single-derivation strategy, the

two a-reachability relations (0 a−→ 2 and 1
a−→ 2) are sepa-

rately propagated. This separate propagation process intro-
duces derivation redundancy, hindering the efficiency of CFL-

reachablity solving. To address this problem and dimin-
ish derivation redundancy, we propose a multi-derivation
approach – instead of propagating reachability relations
separately, we propagate them in batches.

Figure 1d depicts our multi-derivation strategy. The two
reachability relations, 0 a−→ 2 and 1

a−→ 2, are packed together
as one set {0, 1} a−→ 2. Then the set of a-reachability relations
are propagated along the edge 2

b−→ 3, resulting in the set of
two new X-reachability relations ({0, 1} X−→ 3), produced
by the rule X ::= a b. Next, the set {0, 1} X−→ 3 is further
propagated along c-edge 3

c−→ 4. As a result, multiple new
Y -reachability relations ({0, 1} Y−→ 4) are derived simulate-
nously by the production Y ::= X c.

Compared to the standard single-derivation strategy, our
multi-derivation approach can significantly reduce the num-
ber of reachability propagations, thereby boosting the per-
formance of CFL-reachability algorithms. In this example,
while the standard SRD approach necessitates four propa-
gations to derive all the X- and Y -reachability relations, our
multi-derivation approach accomplish the same task in just
two propagations.

3.2 Tailoring Multi-derivation for Transitivity
Transitive relations, commonly utilized to represent con-
trol and data flows, are prevalent in CFL-based program
analyses. However, these relations can lead to redundant
propagation, which diminishes the performance of the CFL-
reachability solving. Consider the CFG in Figure 2a, where
A ::= A A is a fully transitive production (Definition 1) and
X ::= X A is a partially transitive production (Definition 2).
In Figure 2b, G0 is the input graph, while G1 results from
applying the productions X ::= x and A ::= a to G0. In
Figure 2c, the two A-edges 1 A−→ 2 and 2

A−→ 3 produces the
secondary edge 1 A−→ 3 (highlighted with a curvy line) based
on the fully transitive production A ::= A A. Subsequently,
the X-reachability relation 0

X−→ 1 is propagated twice from
Node 1 to Node 3: once via the path 1

A−→ 2
A−→ 3, and again

via the edge 1
A−→ 3 (the curvy line). Consequently, the edge

0
X−→ 3 is derived twice, resulting in redundant derivation.

Such redundancy is also called transitive redundancy [23].
Transitivity-aware Propagation Graph. To reduce tran-

sitive redundancy, we introduce a simple yet effective graph

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

A ::= AA | a

X ::= XA | x

(a) A context-free grammar

1
0G0

2 3
x

a a

1
0G1

2 3
X

A A

(b) G0 is the input graph, and G1 is trans-
formed from G0 by applying X ::= x and
A ::= a.

1

0

2 3

X
A A

X X

A

(c) Redundant propagation due to transi-
tivity. The X-reachability relations of Node
1 (e.g., 0 X−→ 1) are propagated from Node
1 to Node 3 twice. One is via the path
1

A−→ 2
A−→ 3, and the other is via the

“shortcut” edge 1
A−→ 3 (the curvy line).

Fig. 2: An example to demonstrate the redundant propagation due to transitivity.

Rule Type Production Edge(s) New Edge Constraints

Terminal u
a−→ v u ∈ R(a, v)

ε X ::= ε ∀v ∈ V, v
X−→ v ∀v ∈ V, v ∈ R(X, v)

Unary X ::= Y u
Y−→ v u

X−→ v ∀v ∈ V,R(Y, v) ⊆ R(X, v)

Binary X ::= Y Z u
Y−→ v ∧ v

Z−→ w u
X−→ w ∀u Z−→ v ∈ E,R(Y, u) ⊆ R(X, v)

Dyck X ::= a Y b w
a−→ u ∧ u

Y−→ v ∧ v
b−→ w′ w

X−→ w′ ∀u Y−→ v ∈ E ∧ v
b−→ w ∈ E,R(a, u) ⊆ R(X,w)

TABLE 1: Constraint rules. The first rule performs initialization for terminal edges, while the last four specify constraints
for ε-production, unary production, binary production, and Dyck-style production, respectively, where X ∈ N , Y, Z ∈
(Σ∪N), and a, b ∈ Σ. V and E denote the vertex set and edge set of the edge-labeled graph, respectively. R(X, v) denotes
the X-predecessor set of Node v (Section 2).

representation called propagation graph (Definition 4). For
each transitive relation A, a propagation graph PG(A) is
constructed by selecting primary edges (1 A−→ 2 and 2

A−→ 3)
from the original edge-labeled graph. PG(A) is transitive-
aware since fully transitive relations are implicitly encoded
in PG(A). Partially transitive relations (e.g., X ::= X A)
are solved by batchly propagating X-reachability relations
in PG(A). Note that the construction of propagation graphs
is non-trivial because secondary edges may be derived by
productions other than A ::= A A. Section 4.2 discusses this
in detail.

The POCR Approach. A recent solver POCR [23] elimi-
nates redundant propagation for transitivity by utilizing a
spanning tree model. Specifically, given the graph G1 in
Figure 2b, for A-reachability relation, three spanning trees
are constructed:

1) 1
A−→ 2

A−→ 3 rooted from Node 1;
2) 2

A−→ 3 rooted from Node 2;
3) a tree rooted from Node 3 without children.

Given the reachability relation 0
X−→ 1, the spanning tree

rooted from Node 1 is traversed to derive two reachability
relations, 0 X−→ 2 and 0

X−→ 3.
There are two reasons why we do not choose the

spanning tree as the underlying representation of our ap-
proach. First, the A-transitivity information of each node is
maintained separately in distinct spanning trees, and hence
X-reachability relations of different root nodes can not
be packed together for efficient multi-derivation. Second,
the reachability information is redundantly preserved, e.g.,
2

A−→ 3 is copied into at least two spanning trees mentioned

above, which can be expensive in terms of time and space
when A-reachability relations are dense, as confirmed in our
experiments (Section 5). Lastly, it is worth mentioning that
POCR still adopts the single-reachability derivation style like
the standard algorithm. We refer to the original paper [23]
for readers who are interested in more details of POCR.

4 METHODOLOGY

This section formulates our multi-derivation approach as
a constraint-solving framework to solve CFL-reachability
(Section 4.1). In Section 4.2, we introduce a simple yet effec-
tive transitivity-aware graph representation called propagation
graph and propose an efficient algorithm for constructing
propagation graphs during on-the-fly reachability solving.
We then demonstrate how to enhance multi-derivation with
propagation graph representation to tackle transitive rela-
tions, which are ubiquitous in CFL-based program analyses.

4.1 Multi-derivation via Constraint Solving
We implement our multi-derivation approach as a
constraint-solving framework for CFL-reachability. Essen-
tially, the constraints specified by the productions and la-
beled edges are solved by batch propagation of reachability
relations, thereby reducing the derivation redundancy due
to the single-reachability derivation manner in the standard
algorithm.

4.1.1 A Constraint-Solving Perspective
In the literature, the context-free grammar (CFG) is first
translated into the normalized form to fit the standard al-
gorithm (Algorithm 1). After normalization, a CFG contains

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

three forms of production: binary production X ::= Y Z ,
unary production X ::= Y , ε-production X ::= ε. Addi-
tionally, in this paper, Dyck-style productions in the form of
X ::= a Y b are not normalized to enable our optimization
technique, which is detailed in Section 4.1.3. Without loss of
generality, we discuss our approach based on these kinds of
productions.

Columns 2-4 of Table 1 demonstrate how the standard
algorithm generates new edges, where X ∈ N , Y, Z ∈ (Σ ∪
N), and a, b ∈ Σ:

• Regarding an ε-production X ::= ε, an edge v
X−→ v

is generated for each node v ∈ V .
• Given a unary production X ::= Y , an edge u

X−→ v

is derived for each u
Y−→ v ∈ E.

• Given a binary production X ::= Y Z, an edge u
X−→

v is deduced if there exist two edges u
Y−→ w and

w
Z−→ v.

• For a Dyck-style production X ::= a Y b, an edge
w

X−→ w′ is produced if there exists three consecutive
edges w a−→ u, u Y−→ v and v

b−→ w′.

The standard algorithm (Algorithm 1) iteratively produces
new edges according to the above four rules, until a fixed
point is reached where no more new edges can be in-
troduced. The solution to the underlying CFL-reachability
problem is then obtained.

In this work, we formalize the CFL-reachability problem
as a new set constraint problem, and Table 1 defines the five
constraint rules as follows.

• For a terminal edge u
a−→ v in the input graph, we

have u ∈ R(a, v).
• An ε-production X ::= ε indicates that, for any node

v ∈ V , we have v ∈ R(X, v).
• A unary production X ::= Y suggests that, for any

node v ∈ V , we have R(Y, v) ⊆ R(X, v).
• Regarding a binary production X ::= Y Z , a Z-edge

u
Z−→ v produces the constraint R(Y, u) ⊆ R(X, v).

• Given a Dyck-style production X ::= a Y b, two
edges u

Y−→ v and v
b−→ w collectively generate the

constraint R(a, u) ⊆ R(X,w).

For each edge u X−→ v produced by Algorithm 1, we have
u ∈ R(X, v). Specifically, the first constraint rule handles
terminal edges (Table 1) introduced at the initialization step
of Algorithm 1, and Rows 3-6 processes edges introduced by
the four kinds of productions in Algorithm 1, respectively.
Consequently, the least solution satisfying constraints spec-
ified in Table 1 gives identical results to Algorithm 1.

Thus, CFL-reachability is then solved by finding the
least solution satisfying all these introduced set constraints.
While previous works have demonstrated the interconverta-
bility between CFL-reachability and set-constraint prob-
lems [20], [27], we argue that our constraint rules (Table 1)
are more intuitive and considerably simpler. Furthermore,
previous works rely on an off-the-shelf general constraint
solver. In contrast, we develop a solver specifically for CFL-
reachability, with built-in optimizations implemented for
transitivity and common production rules such as Dyck-
style productions (Section 4.1.3).

Algorithm 2: The multi-derivation CFL-reachability
algorithm

Input: Normalized CFG = (Σ, N, P, S),
edge-labeled directed graph G = (V,E)

Output: all reachable pairs in G
1 Function ConsCFL(P , G):
2 Init();
3 Solve(P , G);

4 Procedure Init():
5 for each terminal edge u t−→ v ∈ E do
6 let newRel = {u};
7 DiffProp(newRel , t, v);

8 for each production X ::= ε ∈ P do
9 for each node v ∈ V do

10 let newRel = {v};
11 DiffProp(newRel , X , v);

12 Procedure Solve(P , G):
13 while NW ̸= ∅ do
14 pop (Y, v) from NW ;
15 ∆Y = ∆R(Y, v);
16 ∆R(Y, v) = ∅;
17 R(Y, v) = R(Y, v) ∪∆Y ;
18 for u ∈ ∆Y do
19 S(Y, u) = S(Y, u) ∪ {v}
20 HandleItem(P , G, Y , ∆Y , v);

21 Procedure HandleItem(P , G, Y , ∆Y , v):
22 for each production X ::= Y ∈ P do
23 DiffProp(∆Y , X, v);

24 for each production X ::= Y Z ∈ P do
25 for each u ∈ S(Z, v) do
26 DiffProp(∆Y , X,u);

27 for each production X ::= Z Y ∈ P do
28 for each node u ∈ ∆Y do
29 let newRel = R(Z, u);
30 DiffProp(newRel , X , v);

31 for each production X ::= a Y b ∈ P do
32 for each node u ∈ ∆Y do
33 for each w ∈ S(b, v) do
34 let newRel = R(a, u);
35 DiffProp(newRel , X , w);

36 Procedure DiffProp(newRel , X , v):
37 ∆R(X, v) = ∆R(X, v) ∪ (newRel \R(X, v));
38 if ∆R(X, v) changes then
39 add tuple ⟨X, v⟩ into NW ;

4.1.2 The Multi-derivation Algorithm

Algorithm 2 presents our algorithm for multi-derivation.
Similar to the standard algorithm (Algorithm 1), Algo-
rithm 2 is divided into two steps, initialization (Init in
Lines 4-11) and reachability solving (Solve in Lines 12-35).

The algorithm maintains a work list NW of 2-tuples

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

⟨X, v⟩, where X is an edge label and v is a node. Re-
call that R(X, v) and S(X, v) denote the predecessor and
successor sets of Node v in the input edge-labeled graph
G, respectively (Section 2.3). We leverage the widely used
difference propagation technique [29], [30], [31] to avoid re-
dundant processing, and ∆R(Y, v) denotes the set of new
Y -reachability relations of node v to be processed, i.e.,
∆R(Y, v) = {u|u Y−→ v is a newly introduced Y -reachability
relation not yet processed}. Initially, ∆R(Y, v) is ∅. The
algorithm dynamically updates ∆R(Y, v) with newly intro-
duced Y -reachability relations, and the set is reset to ∅ after
all relations in ∆R(Y, v) are processed.

The initialization step handles two kinds of edges: edges
labeled by a terminal symbol from the input graph (Lines
5-7) and self-referencing edges produced by productions in
the form X ::= ε (Lines 8-11). Given a terminal edge u

t−→ v,
node u is added into ∆R(t, v) and the pair ⟨t, v⟩ is pushed
into NW via the procedure DiffProp (Lines 36 - 39). Self-
referencing edges are handled in a similar fashion, to satisfy
constraints indicated by ε-production.

During reachability solving, a pair ⟨Y, v⟩ is selected
at each iteration (Line 14). The set of newly introduced
relation ∆R(Y, v) is reset to ∅ after being copied to ∆Y
for further processing (Lines 15-16). Next, the edge-labeled
graph is updated by incorporating the set of new edges
{u Y−→ v|u ∈ ∆Y } (Lines 17-19). In line 20, we invoke
the procedure HandleItem to process the four kinds of
productions involving Y -reachability, as follows:

• For unary production X ::= Y , ∆R(X, v) is up-
dated with ∆Y (with R(X, v) excluded), ensuring
the unary constraint R(Y, v) ⊆ R(X, v) (Line 22-23).

• Regarding a production X ::= Y Z , for each out-
going Z-edge v

Z−→ u from node v, ∆Y is merged
into ∆R(X,u) with R(X,u) excluded (Lines 24-26).
Consequently, the constraint R(Y, u) ⊆ R(X, v) is
satisfied.

• For a production X ::= Z Y , for each Y -edge u Y−→ v
where u ∈ ∆Y , the Z-reachability relation of node
u (R(Z, u)) is merged into ∆R(X, v) (Lines 27-30),
satisfying the constraint R(Z, u) ⊆ R(X, v).

• Finally, given a Dyck-style production X ::= a Y b,
for each Y -edge u

Y−→ v where u ∈ ∆Y and an edge
v

b−→ w, the a-reachability relation of node u (R(a, u))
is merged into ∆R(X,w) (Lines 31-35), with respect
to the constraint R(a, u) ⊆ R(X,w).

In the end, all predecessors and successors of each node are
computed and the resulting graph is guaranteed to satisfy
all constraints in Table 1.

4.1.3 Optimization for Dyck-style Productions

Productions in the form X ::= a Y b are prevalent
in many CFL-reachability based program analyses. They
are used to model a range of programming constructs,
including matching field load and store [7], [8], [10], [12],
pointer deference and reference [9], or procedure call and
return [20], [32], [33]. These productions generalize Dyck-
CFL reachability [20], which requires X and Y to be the
same non-terminal symbol.

A ::= A B | B

X ::= XB | x

B ::= a

Fig. 3: An equivalent context-free grammar rewritten from
the CFG in Figure 2a to reduce redundant propagation.

In the standard algorithm [27], the production
X ::= a Y b undergoes normalization into two produc-
tions: Z ::= a Y and X ::= Z b. Each of these productions
contains at most two symbols on the right-hand side and
Z is a newly introduced non-terminal symbol. However,
such normalization introduces unnecessary computation of
Z-reachability relations, often leading to a significant degra-
dation in overall performance. A Z-reachability relation
u

Z−→ v is necessary only if there exists an outgoing b-edge
from v. However, in practice, Y -relation is often dominant
and most Z-relations generated by production Z ::= a Y
are unnecessary.

To overcome the above drawbacks, we propose to pro-
cess the production X ::= a Y b directly without normal-
ization. Thus, given a production X ::= a Y b, we have the
constraint ∀u Y−→ v ∈ E ∧ v

b−→ w ∈ E,R(a, u) ⊆ R(X,w).
New X-reachability relations are obtained by computing the
Cartesian product of Node u’s a-predecessors (R(a, u)) and
Node v’s b-successors (S(b, v)). Both the standard algorithm
and our multi-derivation algorithm can adopt this opti-
mization, as highlighted in Algorithm 1 and Algorithm 2,
respectively.

4.2 Reducing Transitive Redundancy with Propagation
Graphs
In this section, we enhance our multi-derivation algorithm
by incorporating propagation graphs and demonstrate how
this improvement helps reduce transitive redundancy.

4.2.1 Propagation Graphs
The key to reducing transitive redundancy is to identify and
prune secondary edges, since these edges do not contribute
to deriving new edges but only introduce repetitive deriva-
tion. In the simple case, secondary edges are derived by
fully transitive relations (e.g., A ::= A A in Figure 2c), and
those secondary edges can be easily identified and removed
with syntactical grammar rewriting.

For instance, the context-free grammar (CFG) in Fig-
ure 2a can be transformed into an equivalent CFG in
Figure 3. This grammar transformation introduces a new
non-terminal symbol B, to represent edges deduced by a-
edges. Then the original production X ::= X A is replaced
by X ::= X B. As a result, X-edges are derived via B-
edges only, rather than via secondary A-edges introduced
by A ::= A A in the original CFG. Note that compared
to the number of B-relations, the number of A-relations
is significantly larger since it amounts to the transitive
closure of B-edges (Section 3.2). Hence, the extra overhead
of computing B-relation is usually negligible.

However, secondary edges can also be dynamically gen-
erated by non-transitive productions, e.g., A ::= B C . And

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

it is not a trivial task to effectively identify and prune such
secondary edges. In our approach, we address this challenge
by maintaining a propagation graph, denoted as PG(A).

Definition 4. (Propagation Graph). Given an edge-labeled
Graph G(V,E), the propagation graph PG(A) for a fully
transitive relation A is the subgraph induced from G with
only primary A-edges, i.e., PG(A) = (V ′, E′), where edge
set E′ consists of all the primary A-edges in E, and vertex
set V ′ consists of the endpoints of E′.

PG(A) is transitivity-aware since it implicitly preserves
all A-reachability relations in the original graph G. More
precisely, the transitive closure of PG(A) records all A-
relations in G. Transitive relations involving A are efficiently
propagated in PG(A), avoiding redundant propagation via
secondary A-edges.

In the literature, the minimum equivalent graph [34] and
transitive reduction [35] – two topics from the graph reach-
ability community – share a similar high-level concept with
our propagation graph. Given an input graph G, these two
previous techniques aim to find the smallest graph G′ such
that there is a path from Node u to Node v in G′ whenever
there is a path from Node u to Node v in G. Analogously,
propagation graphs apply this idea to the transitive rela-
tions for CFL-reachability. Importantly, propagation graphs
work on a dynamic graph (with transitive edges introduced
during reachability solving), and do the edge reduction
partially (meaning that we do not find the smallest graph) to
exploit a sweet spot between efficiency (the time overhead
to build propagation graphs) and effectiveness (removing
more useless edges to make the graph smaller).

4.2.2 Dynamic Construction of Propagation Graph
Algorithm 3 enhances the multi-derivation algorithm (Al-
gorithm 2) with propagation graphs to optimize the han-
dling of fully and partially transitive relations. The algo-
rithm constructs propagation graphs on the fly during CFL-
reachability solving. In a nutshell, PG(A) is dynamically
updated with newly introduced primary A-edges until a
fixed point where no more new edges can be deduced.
This step effectively resolves fully transitive productions
A := AA. Moreover, partially transitive productions in-
cluding X := XA and X := AX are handled using only
primary A-edges to avoid transitive redundancy.

How do we know whether a newly deduced A-edge is a
primary edge or not? We maintain the transitive closure of
PG(A), and the notation R∗(A, v) represents all nodes that
can transitively reach Node v in PG(A). Thus a new A-edge
u

A−→ v is regarded as a primary edge only if u /∈ R∗(A, v).
This strategy guarantees soundness by incorporating all
primary A-edges in PG(A), it also achieves high efficiency
by discarding as many secondary edges as possible. Note
that here we use the notation R∗ instead of R, indicating
that, for a fully transitive relation A, the result set R solely
contains primary A-edges (i.e., edges in PG(A)). We next
show how PG(A) and its transitive closure are constructed.

Computing Transitive Closure of PG(A). During ini-
tialization, given a transitive relation A, both PG(A) and
R∗(A, v) (for any node v ∈ V) are initialized to ∅. Hence,
we have introduced 4 new lines (Lines 3-6) to the origi-
nal procedure ConsCFL from Algorithm 2. Moreover, the

original DiffProp procedure is modified to handle fully
transitive A-edges, as shown in Lines 10-14 of Algorithm 3.
The procedure UpdatePG updates PG(A) and R∗(A, v)

according to the newly derived primary edge u
A−→ v (Line

13). ∆R(X, v) is updated accordingly. In UpdatePG (Lines
20-22), given a new primary edge u

A−→ v, we first insert
the edge into PG(A). Next, the transitive closure of PG(A)
is updated by propagating the new reachability relations
introduced by u

A−→ v (i.e., R∗(A, u) ∪ {u}) in a depth-first
manner in the procedure DFS.

In procedure DFS (Lines 24-26), only new reachability
relations ∆A are propagated along PG(A) to avoid re-
dundant propagation. R∗(A, u) is then updated by incor-
porating ∆A. Importantly, for a fully transitive relation
A, the production A ::= A A is also handled simultane-
ously by computing the transitive closure R∗(A, v) when
dynamically constructing PG(A). Hence, CFL-reachability
can be solved by skipping fully transitive productions from
the production set P before invoking procedure Solve, as
shown in Lines 7-8.

Handling Non-transitive Productions. A-edges derived
in procedure DFS are the so-called secondary A-edges and
they will be discarded in solving partially transitive pro-
ductions, i.e., X ::= X A and X ::= A X . Nevertheless,
secondary edges are still needed for non-transitive produc-
tions such as X ::= A Y and X ::= A. Hence, for
newly generated secondary edges, we invoke the procedure
HandleItem to handle those non-transitive productions
(Lines 27-28).

4.2.3 Implementation Strategy

This section discusses some practical trade-offs in dynami-
cally constructing propagation graphs, including the eager
propagation strategy, how insertion order affects the sparse-
ness of propagation graphs, and the memory overhead
introduced by the propagation graph.

Eager Propagation. The DFS procedure eagerly prop-
agates A-reachability relations to compute the transitive
closures of PG(A). Alternatively, one can iteratively prop-
agate A-reachability relations using a worklist, as shown in
Algorithm 2. However, this worklist-based approach often
results in the creation of redundant secondary edges in
PG(A), which can degrade performance. Figure 4 illustrates
such a scenario.

Example 1. There are three steps in Figure 4, with one edge
(the dashed line) deduced at each step, as follows.

• Step(a), 1 A−→ 2 is deduced and inserted into PG(A).
Consequently, we have {1} ⊆ R(A, 2).

• Step(b), 0 A−→ 1 is deduced and inserted into PG(A).
As a result, we have {0} ⊆ R(A, 1).

• Step(c), the secondary edge 0
A−→ 2 is deduced via

non-transitive productions. However, the worklist-
based approach is unaware that 2 is reachable from
0 since such information is not explicit until we
propagate {0} ⊆ R(A, 1) to Node 2. Hence, the
edge 0

A−→ 2 may be mistakenly inserted to PG(A),
causing performance degradation.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

Algorithm 3: Enhancing Algorithm 2 with propa-
gaiton grpahs.

Input: Normalized CFG = (Σ, N, P, S),
edge-labeled directed graph G = (V,E)

Output: all reachable pairs in G
1 Function ConsCFL(P , G):
2 Init(); /* Lines 4-11 in Algo. 2 */
3 for each fully transitive relation A do
4 PG(A) = ∅;
5 for each node v ∈ V do
6 R∗(A, v) = ∅;

7 let P ′ be P without fully transitive productions;
8 Solve(P ′, G); /* Lines 12-20 in Algo. 2 */

9 Procedure DiffProp(newRel , X , v):
10 if X is fully transitive then
11 for each node u in newRel do
12 if u /∈ R∗(X, v) then
13 UpdatePG(X,u, v);
14 ∆R(X, v) = ∆R(X, v) ∪ {u};

15 else
16 ∆R(X, v) = ∆R(X, v) ∪ (newRel \R(X, v));

17 if ∆R(X, v) changes then
18 add (X, v) into NW

19 Procedure UpdatePG(A, u, v):

20 add u
A−→ v to PG(A);

21 srcSet = R∗(A, u) ∪ {u};
22 DFS(A, srcSet , v);

23 Procedure DFS(A, srcSet, u):
24 ∆A = srcSet \R∗(A, u);
25 if ∆A ̸= ∅ then
26 R∗(A, u) = R∗(A, u) ∪∆A;
27 let P− be P without productions in the form

of X ::= X A, X ::= A X , and A ::= A A;
28 HandleItem(P−, G, A, ∆A, u); /* Lines

21-35 in Algo. 2 */
29 for u A−→ v ∈ PG(A) do
30 DFS(A,∆A, v);

Unlike iterative propagation (which tends to collect more
reachability relations before propagation), eager propaga-
tion appears to propagate fewer reachability relations in
one batch. However, it keeps PG(A) sparse by excluding as
many secondary edges as possible. In this example, eagerly
propagating {0} ⊆ R(A, 1) to Node 2 at step(b) avoids
inserting 0

A−→ 2 into PG(A) at step(c).
Insertion Order. Suppose that in Figure 4, the insertion

order is 0
A−→ 2, 0 A−→ 1 and 1

A−→ 2. Then even with eager
propagation, 0 A−→ 2 will cause redundant propagation but
is still kept in PG(A). Based on our empirical experience,
such redundant edges only occupy a small portion, mak-
ing them acceptable. Besides, identifying and removing all
secondary edges in the presence of cycles and dynamically

1

2

A

(a)

0

1

2

A

A

(b)

0

1

2

A

A
A

(c)

Fig. 4: An example. Three edges are inserted at each step
in turn. Edges 1

A−→ 2 and 0
A−→ 1 are both primary edges,

while 0
A−→ 2 is a secondary edge and need to be excluded

from PG(A) to avoid redundant propagation.

inserted edges, i.e., online transitive reduction [36] (which
has the same complexity as computing the transitive clo-
sure [35]), would also incur additional costs.

In practice, the insertion order is determined by the
worklist order of the CFL-reachability algorithm. We have
experimented with different ordering strategies (e.g., FIFO
or FILO), and the performance differences are negligible.

Memory Overhead of Propagation Graph. Given a fully
transitive relation A, when the CFL-reachability algorithm
reaches a fixed point, let EA be the set of all A-edges.
According to Definition 4, EA is the transitive closure of
PG(A), hence edges in PG(A) are negligible when com-
pared to EA.

4.2.4 Multi-derivation for Partially Transitive Productions

Partially transitive relations (e.g., X ::= X A where
A is fully transitive) are calculated by propagating X-
reachability relations via primary A-edges, that is, edges in
PG(A). This method effectively avoids redundant propaga-
tion when solving partially transitive productions.

Let us revisit the example in Figure 2. There are two
primary A-edges in Figure 2c: 1 A−→ 2 and 2

A−→ 3. Given the
partially transitive production X ::= X A, each primary
A-edge will introduce a constraint, resulting in two new
constraints, R(X, 1) ⊆ R(X, 2), and R(X, 2) ⊆ R(X, 3),
respectively. The secondary A-edge 1

A−→ 3 is implicitly
encoded in PG(A), instead of being explicitly represented
in the labeled graph G (1 /∈ R(A, 3), since 1

A−→ 3 is a
secondary A-edge). Hence, it will not generate constraints
for X-reachability relations, effectively avoiding redundant
propagation.

4.2.5 Correctness

Algorithm 3 optimizes the processing of both the fully
and partially transitive relations of our multi-derivation ap-
proach. We now prove the correctness of this optimization.

Lemma 1. R∗ is the transitive closure of PG(A).

Proof sketch. According to Algorithm 3 (Lines 21, 22, and
25), for each edge u → v in PG(A), we have two constraints
R∗(A, u) ⊆ R∗(A, v) and u ∈ R∗(A, v). Recall that initially
R∗(A, v) (for any node v) is empty, and is calculated using
solely these two constraint rules. Thus, R∗ is the transitive
closure of PG(A).

By Lemma 1, we have the following corollary.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

Corollary 1. Node v is reachable from Node u in PG(A) iff
u ∈ R∗(A, v).

Lemma 2. An A-edge u
A−→ v exists iff Node v is reachable

from Node u in PG(A).

Proof sketch. Regarding the generation of A-edges, Al-
gorithm 3 differs from Algorithm 2 only in handling the
production A ::= AA.

For each A-edge, say u
A−→ v, produced by a production

other than A ::= AA, Algorithm 3 (Lines 12-13) attempts to
insert it into PG(A). The edge u

A−→ v is not inserted into
PG(A) only if condition u ∈ R∗(A, v) holds, which means
that Node v is already reachable from Node u in PG(A)
(Corollary 1). In that sense, discarding such an edge does
not affect A-reachability on PG(A).

On the other hand, a fully transitive production A ::=
AA only generates A-edges that are formed by connecting
two or more consecutive A-edges. Thus, excluding these
edges does not influence A-reachability of PG(A). This
completes our proof.

Theorem 1. Algorithm 3 correctly derives all A-edges (by
computing R∗(A, v) ∀v ∈ V).

Proof sketch. Applying Corollary 1 and Lemma 2 together,
an A-edge u

A−→ v exists iff u ∈ R∗(A, v).

Theorem 2. Algorithm 3 correctly handles partially transi-
tive productions X ::= X A (resp. X ::= A X).

Proof sketch. When solving partially transitive relations,
Algorithm 3 only uses primary A-edges (edges in PG(A))
to handle production X ::= X A (resp. X ::= A X).

According to Lemma 2, an A-edge u
A−→ v exists iff there

is a path from Node u to Node v in PG(A). Concerning
production X ::= X A (resp. X ::= A X), X-edges can be
transited via consecutive A-edges to derive new X-edges.
This transitivity ensures that all X-edges can be exactly
derived using only edges in PG(A). Therefore, Algorithm 3
correctly solves partially transitive productions.

4.2.6 Time and Space Complexity

The theoretical time and space complexity of PEARL (the
multi-derivation algorithm) is the same as that of the single-
reachability derivation (SRD) approach, including POCR
and the standard algorithm. Consider a production X ::=

Y Z with multiple Y -edges ({u0, u1, ..., uk}
Y−→ v) and a Z-

edge v
Z−→ w. The multi-derivation algorithm process the

set of k Y -edges in batches, which significantly reduces the
number of iterations but does not impact the theoretical
complexity. Nevertheless, this batching processing approach
brings significant practical benefits, as evident in Table 4,
Table 5 and Table 6.

5 EVALUATION

We evaluate the performance of our multi-derivation ap-
proach on two practical static analysis clients: context-
sensitive value-flow analysis [24], [25] and field-sensitive
alias analysis [9] for C/C++.

5.1 Experimental Setup

Environment. All the experiments are conducted on a ma-
chine with a Intel(R) Xeon(R) Gold 5317 CPU @ 3.00GHz
and 1 TB of physical memory. All the experiments are
conducted with a time limit of 6 hours and a memory limit
of 512 GB.

Value-flow Analysis. We perform context-sensitive
value-flow analysis on the sparse value-flow graphs
(SVFG) [24], [25]. Figure 5a shows the context-free grammar
(CFG) for value-flow analysis, where calli, reti and a are
terminals, and A is a non-terminal symbol and also the start
symbol. In particular, calli and reti denote parameter pass-
ing and return flow at the i-th call site respectively, a denotes
an assignment, and A denotes an intraprocedural/interpro-
cedural value flow. In fact, this CFG is a specialization of
the popular Dyck-CFL grammar [10], [20], which has been
extensively studied in recent years. The analysis is also field-
sensitive, since each field object is represented as a single
node in the SVFG. The normalized grammar is listed in
Figure 5b.

Alias Analysis. The field-sensitive alias analysis for C++
is conducted on the program expression graph (PEG) [9].
Figure 6a presents the CFG, where a denotes an assignment
statement, d denotes a pointer dereference, fi denotes the
address of i-th field, A denotes a direct/indirect value flow,
M denotes memory alias, and V denotes value alias. M?
means that M is optional. The PEG is bidirected [10], [11],
[32], i.e., for an edge u

X−→ v in PEG, there is a reverse

edge v
X−→ u in PEG. The normalized grammar is shown in

Figure 6b.
Setup and Benchmarks. We use the benchmarks1 pro-

vided by POCR [23]. These benchmarks contain SVFG and
PEG of 10 SPEC 2017 C/C++ programs. Following POCR,
SVFG and PEG are pre-processed by cycle elimination [37]
to collapse cycles of a-edges and variable substitution [38]
to compact particular a-edges. In Table 2, columns 2-5 and
columns 6-9 list the numbers of nodes and edges of SVFG
and PEG before and after offline preprocessing on each
benchmark, respectively.

Baselines. We compare our approach with two baselines:
the standard algorithm (Algorithm 1), denoted as STD, and
a state-of-the-art solver, POCR [23], which has been open-
sourced on Github2. POCR reduces derivation redundancy
due to transitivity via ordered derivations.

For illustration, we mainly compare two groups of al-
gorithms: (1) transitivity-unaware group, namely, STD and
PEARL (Algorithm 2). For a fair comparison, we rewrite
the input CFGs, as shown in Figure 5c and Figure 6c, to
reduce part of the transitive redundancy syntactically [23].
(2) transitive-aware group, that is, PEARLPG, POCR, and
POCRPG. PEARLPG (Algorithm 3) enhances PEARL with
propagation graphs. POCRPG– an ablation of POCR designed
by us – replaces the default spanning tree model of POCR
with our propagation graph, while keeping the other imple-
mentation parts of POCR unchanged. We use the CFGs in
Figure 5b and Figure 6b. All algorithms (including two base-

1. https://github.com/kisslune/CPU17-graphs
2. https://github.com/kisslune/POCR

https://github.com/kisslune/CPU17-graphs
https://github.com/kisslune/POCR

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

A ::= A A | calli A reti | a | ε
(a) Context-free grammar

A ::= A A | CAi reti | a | ε

CAi ::= calli A

(b) Normalized grammar

A ::= A B | a | ε

CAi ::= calli A

B ::= CAi reti | a

(c) Rewritten grammar

Fig. 5: CFG for context-sensitive value-flow analysis

M ::= d V d

V ::= A V A | fi V fi | M | ε

A ::= A A | a M? | ε

A ::= A A | M? a | ε

(a) Context-free grammar

DV ::= d V

M ::= DV d

FVi ::= fi V

V ::= A V | V A | FVi fi | M | ε

A ::= A A | a M | a | ε

A ::= A A | M a | a | ε

(b) Normalized grammar

DV ::= d V

M ::= DV d

FVi ::= fi V

V ::= A V | V A| FVi fi | M | ε

A ::= a M | a | ε

A ::= M a | a | ε

(c) Rewritten grammar

Fig. 6: CFG for field-sensitive alias analysis

TABLE 2: Benchmark statistics of value-flow analysis and alias analysis. Columns 2-5 and Columns 6-9 give the numbers
of nodes and edges in the input graph before and after preprocessing of SVFG and PEG, respectively.

Benchmark
SVFG (Value-Flow Analysis) PEG (Alias Analysis)

Before Preprocessing After Preprocessing Before Preprocessing After Preprocessing
#Nodes #Edges #Nodes #Edges #Nodes #Edges #Nodes #Edges

cactus 544480 1007989 223046 616399 93557 212478 65232 153470
imagick 574089 842509 165096 319141 119314 301846 73499 196730
leela 64466 89081 21711 40409 22186 49748 14371 33326
nab 55652 72366 15415 23736 16261 34676 8794 19218

omnetpp 664358 1857831 237854 1277123 241916 509166 146049 311980
parest 299718 407343 114099 199793 117500 251436 67949 148286

perlbench 697744 1662445 321778 1122795 139183 348916 72231 192994
povray 537775 1041687 213130 621400 76405 174258 45622 110732
x264 207064 340217 66417 162595 60956 136352 40625 94110
xz 49395 62955 15072 23002 12425 26468 7130 15228

lines) are enhanced with the Dyck optimization discussed in
Section 4.1.3.

During the evaluation, we identified a performance is-
sue of POCR due to unnecessary operations in value-flow
analysis, which has been fixed by us. Consequently, POCR
appears to perform better in terms of efficiency than in the
previous results of our conference paper [26]. Moreover, the
STD solver here runs noticeably faster than the one in our
conference paper [26] due to both grammar rewriting and
Dyck optimization.

Implementation. All codes including baselines and our
approach are implemented on top of a popular static anal-
ysis framework SVF [39] in C++. To ensure fair com-
parisons, all data structures are implemented consistently
across distinct baselines and our approach. Specifically, the
predecessor set R(X,u) is implemented as a hash map
(std::unordered_map), which maps a pair of (X,u) to
a hash set (std::unordered_set) that stores all the X-
predeccessors of Node u. The successor set S(X,u) and
transitive closure R∗(X,u) are implemented in a similar

manner. As an optimization, the delta (predecessor) set
∆R(X,u) is implemented using a hash map, mapping a
pair of (X,u) to an array (std::vector) instead of a hash
set, since no membership checking is necessary.

Evaluation of Correctness. The correctness of the pro-
posed algorithms in this paper is verified practically by the
fact that our solvers compute the same set of reachable pairs
as the standard algorithm (if scalable) in our experiments.

Our evaluation aims to answer the following research
questions:

• (RQ1). How does PEARL compare to the standard
algorithm?

• (RQ2). How does PEARLPG compare to the state-of-
the-art solver POCR?

• (RQ3). How extensive are fully and partially transi-
tive edges in real-world CFL-reachability problems?

• (RQ4). Is propagation graph representation effective
in reducing redundant propagation?

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

TABLE 3: Speedups by applying grammar rewriting on STD
on two clients. “VF” and “AA” denote value-flow analy-
sis and alias analysis, respectively. With grammar rewrit-
ing, STD successfully analyzes 1 and 3 more benchmarks
for value-flow analysis and alias analysis, respectively. “-
” means that STD (either without or with GR) exceeds the
time or memory limit, and the speedup number cannot be
obtained

id VF AA
cactus 39.08x -
imagick 32.76x -
leela 3.08x 2.5x
nab 49.32x 1.05x

omnetpp 3.28x -
parest 1.21x 1.63x

perlbench - -
povray 28.21x -
x264 17.53x 1.29x
xz 2.66x 1.09x

Avg. 19.68x 1.51x

5.2 RQ1. Comparison with STD

Grammar Rewriting. As shown in Table 3, the application
of grammar rewriting enables STD to achieve average
speedups of 19.68× and 1.51× for value-flow analysis and
alias analysis, respectively . Furthermore, grammar rewrit-
ing allows STD to analyze 1 more benchmark (perlbench)
for value-flow analysis and 3 more benchmarks (cactus,
imagick, and povray) for alias analysis, all within the
constraints of 6 hours and 512 GB of memory. However, it is
important to note that, even with grammar rewriting, some
benchmarks (omnetpp and perlbench in alias analysis)
remain unanalyzed by STD, highlighting the need for more
advanced optimizations.

In value-flow analysis, grammar rewriting results in
speedups range from 1.21× for parest to 49.32× for
cactus. The effectiveness of grammar rewriting is directly
related to the reduction of redundant derivations. For an
A-path v1

A−→ v2
A−→ . . .

A−→ vn−1
A−→ vn with n pri-

mary A-edges, the original production A ::= A A may
require n − 2 derivations to derive the edge v1

A−→ vn

(v1
A−→ vi ∧ vi

A−→ vn for 2 <= i <= n − 1). However, as
shown in Figure 5c, with grammar rewriting, the number of
derivations needed to obtain the edge v1

A−→ vn is reduced
to 1 (v1

A−→ vn−1 ∧ vn−1
B−→ vn) using the production

A ::= A B, thereby eliminating redundant derivations.
To estimate the number of eliminated redundant deriva-

tions, we calculate the ratio of A-edges to B-edges. The
larger the ratio, the more redundant derivations are poten-
tially optimized. In the case of parest and cactus, the
number of A-edges is 4.46× and 71.04× higher than the
number of B-edges, respectively, leading to the observed
disparity in speedups.

Although grammar rewriting can achieve substantial
performance improvements, there still exists a large amount
of transitive redundancy during on-the-fly reachability solv-
ing. Hereafter, we evaluate all algorithms with grammar

rewriting, to demonstrate the effectiveness of propagation
graphs.

Performance Improvement. Table 4 and Table 5 give the
efficiency results of value-flow analysis and alias analysis,
respectively. To evaluate the benefit of multi-derivation, we
compare PEARL with STD in terms of performance. Regard-
ing efficiency, PEARL runs 5.64× and 4.72× faster than STD
for value-flow analysis and alias analysis, respectively. Dur-
ing reachability solving, PEARL adopts a muti-derivation
manner via batch propagation to reduce propagation efforts,
thereby boosting the overall performance.

Reduced Propagation. To quantify the benefit achieved
by multi-derivation, We compare STD with PEARL to show
how many propagations are pruned by batch propagation.
We define the number of propagations during solving reach-
ability as P . Thus, the reduction rate achieved by batch
propagation can then be obtained via (PSTD − PPEARL)/PSTD.
Table 6 shows the reduction rates achieved by PEARL over
STD, with average reductions of 80.96% (up to 96.73%) and
79.72% (up to 88.73%) for value-flow analysis and alias
analysis, respectively.

Notably, PEARL only reduces 33.75% of propagation for
nab in value-flow analysis. This outlier is attributed to an
optimization we implemented for STD: newly derived edges
are inserted into W first, and they are added to E only when
popped out from W . Compared to the default algorithm
that simultaneously introduces newly derived edges into
W and E (e.g., line 17 in Algorithm 1), this optimization
reduces redundant propagation (derivation checks) caused
by newly derived edges. Consider the production A ::= BC

with two newly produced edges u
B−→ v (B-edge) and

v
C−→ w (C-edge). If both edges are directly added to W

and E, there will be two propagation triggered respectively
by popping the B-edge and the C-edge from W . In contrast,
with the optimization, the redundant propagation triggered
by the firstly popped B-edge can be avoided since the C-
edge has not been added to the edge set E yet. Note that
this optimization reduces redundant propagation at the cost
of performing extra checks in W . In our experiments, the
optimization can improve performance by up to 20%.

In the case of nab, this benchmark has a dense graph
where a large number of edges can be derived repeatedly,
but only one copy is kept in W . Hence, a large portion
of propagation is filtered out beforehand due to the above
optimization. On the other hand, by keeping the newly
derived edges in the delta set, PEARL does not require
such an optimization to reduce redundant derivations. As a
result, the reduction rate of nab is relatively smaller. In fact,
the reduction rate of nab without the above optimization is
much higher, reaching 97.54%.

Optimization for Dyck-style productions. To study the
benefits of the Optimization for Dyck-style productions
introduced in Section 4.1.3, we also implement a variant
of PEARL without this optimization. Table 7 gives the per-
formance improvement and memory reduction of applying
propagation graph on top of PEARL. Specifically, Optimiza-
tion for Dyck-style productions obtains average speedups of
3.86× and 4.2× on two clients. Furthermore, Optimization
for Dyck-style productions also reduces memory consump-
tion because no intermediate reachability relation is needed.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

TABLE 4: Runtime statistics (in seconds) of context-sensitive value-flow analysis. . STD denotes the standard algorithm
and PEARL represents the multi-derivation algorithm; PEARLPG enhances PEARL with propagation graph, POCR signifies
the recent solver in [23], while POCRPG– an ablation of POCR– replaces the default spanning tree model of POCR with our
propagation graph. All algorithms are equipped with the Optimization for Dyck-style productions technique.

id STD PEARL PEARLPG POCR POCRPG

cactus 356.44 34.73 22.39 89.85 36.74
imagick 44.62 7.03 4.12 11.24 5.70
leela 0.98 0.30 0.14 0.30 0.15
nab 10.25 2.56 2.17 7.90 5.83

omnetpp 19.84 5.68 2.82 7.17 3.35
parest 1.85 0.90 0.27 0.38 0.26

perlbench 496.70 59.41 48.70 171.31 99.42
povray 380.21 41.19 27.90 123.83 48.45
x264 32.16 5.21 3.26 12.24 6.60
xz 0.32 0.10 0.04 0.11 0.05

TABLE 5: Runtime statistics (in seconds) of field-sensitive alias analysis. “-” means exceeding the time limit(6 hours). The
meanings of column headings are the same as Table 4.

id STD PEARL PEARLPG POCR POCRPG

cactus 2669.86 441.67 97.65 196.37 185.41
imagick 6698.93 1451.08 372.50 642.60 637.43
leela 34.92 7.69 2.21 3.37 3.22
nab 2.56 0.71 0.26 0.86 0.80

omnetpp - 8605.24 1414 3507.18 5352.42
parest 1238.54 211.80 50.63 124.64 118.36

perlbench - - 1962.87 4080.55 3608.89
povray 2750.20 481.12 98.97 238.50 234.73
x264 62.68 16.34 6.08 14.91 14.04
xz 1.90 0.53 0.23 0.48 0.43

TABLE 6: Reduction rates in propagations of reachability re-
lations achieved by PEARL over STD. “VF” and “AA” denote
value-flow analysis and alias analysis, respectively. For alias
analysis, STD timeouts in two benchmarks (omnetpp and
perlbench) while PEARL timeouts in perlbench.

id VF AA
cactus 96.14% 88.73%
imagick 92.57% 76.92%
leela 76.78% 72.32%
nab 33.75% 73.42%

omnetpp 76.48% -
parest 72.23% 87.17%

perlbench 96.73% -
povray 93.97% 85.79%
x264 89.9% 74.58%
xz 81.08% 78.8%

Avg. 80.96% 79.72%

In consequence, the reduced memory usages are 25.25% and
43.5% in value-flow analysis and alias analysis, respectively.

Conclusion. By performing batch propagation, PEARL
eliminates a substantial number of propagations of reacha-
bility relations over STD during reachability solving, thereby
obtaining considerable performance improvement. Apply-

TABLE 7: Speedups and memory reduction (in terms of
memory saved) when applying Dyck optimization with
PEARL. “-” means at least one variant timeout. “VF” and
“AA” denote value-flow analysis and alias analysis, respec-
tively. “Spu.” and “Red.” represent speedup and memory
reduction, respectively.

id
VF AA

Spu. Red. Spu. Red.
cactus 2.64x 21.34% 2.74x 50.32%
imagick 2.72x 25.56% 7.69x 52.9%
leela 2.07x 20.0% 2.97x 47.5%
nab 1.45x 10.87% 2.03x 27.78%

omnetpp 15.62x 50.38% 1.36x 32.1%
parest 1.69x 14.29% 1.78x 34.91%

perlbench 3.52x 23.8% - -
povray 4.71x 39.32% 2.0x 39.97%
x264 2.13x 26.92% 14.42x 61.56%
xz 2.0x 20.0% 2.83x 44.44%

Avg. 3.86 x 25.25 % 4.2 x 43.5 %

ing Dyck optimization on top of the multi-derivation algo-
rithm can also achieve promising speedups with consider-
able memory reduction.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

ca
ct
us

im
ag
ic
k

le
el
a
na
b

om
ne
tp
p

pa
re
st

pe
rl
be
nc
h

po
vr
ay

x2
64 xz

2−4

2−2

20

22

24

26
POCR PEARLPG POCRPG

Fig. 7: Memory usage (in GB) in value-flow analysis.

ca
ct
us

im
ag
ic
k

le
el
a
na
b

om
ne
tp
p

pa
re
st

pe
rl
be
nc
h

po
vr
ay

x2
64 xz

2−4

2−2

20

22

24

26

POCR PEARLPG POCRPG

Fig. 8: Memory usage (in GB) in alias analysis.

5.3 RQ2. Comparison with POCR

A recent solver POCR [23] utilizes the spanning tree model
to reduce redundant propagation for transitive relations,
which is briefly described in Section 3.2. Here we evaluate
the performance of our solver PEARLPG, which enhances
multi-derivation with propagation graph representation,
against POCR.

For a client analysis, POCR provides two options: (1) a
general solver, which accepts a CFG defined by a grammar
file, and (2) a built-in solver, which “inlines” the grammar
into the algorithm. A built-in solver typically outperforms
its general counterpart, since there are more optimization
opportunities for a specific client, e.g., symmetry. Following
POCR [23], we choose built-in solvers to evaluate the perfor-
mance for a fair comparison. To this end, we implement our
built-in solvers to compare with POCR.

Result. Table 4 and Table 5 display the performance
of PEARLPG and POCR in value-flow analysis and alias
analysis, respectively. In terms of efficiency, PEARLPG out-
performs POCR on all benchmarks. We also give the mem-
ory consumption of PEARLPG and POCR of two clients in
Figure 7 and Figure 8.

ca
ct
us

im
ag
ic
k

le
el
a

na
b

om
ne
tp
p

pa
re
nt

pe
rl
be
nc
h

po
vr
ay

x2
64 xz

0%

20%

40%

60%

80%

100%

VF:A-edge

0%

20%

40%

60%

80%

100%

AA:V -edge AA:A-edge

Fig. 9: The percentages of fully and partially transitive
edges among all inserted edges for value-flow analysis
and alias analysis, respectively. “VF:A-edge” denotes fully
transitive A-edges in value-flow analysis, and “AA:V -edge”
and “AA:A-edge” represents partially transitive V -edges
and fully transitive A-edges in alias analysis, respectively.

Time consumption. In value-flow analysis (Table 4), the
comparison to POCR shows that PEARLPG achieves an
average speedup of 3.09× over POCR, with a maximum
improvement of 4.44× for povray. It is worth noting that
PEARLPG solves each benchmark for value-flow analysis
within one minute. In alias analysis (Table 5), compared
to POCR, PEARLPG achieves a performance improvement of
2.25× over POCR on average (up to 3.31×).

Memory usage. Figure 7 and Figure 8 demonstrate that
PEARLPG consumes less memory than POCR for almost
all benchmarks. In value flow analysis (Table 4), particu-
larly, where the fully transitive edges dominate, PEARLPG

achieves significant memory savings compared to POCR. For
instance, in the cactus benchmark, POCR utilizes nearly 40
GB of memory, whereas PEARLPG only requires less than 5
GB of memory.

Discussion. By combining multi-derivation with prop-
agation graph, PEARLPG obtains promising speedups over
POCR for both clients.

5.4 RQ3. Transitive Edges
Transitive relation plays an important role in CFL-based
program analyses. For example, both data flow and control
flow are inherently transitive. We quantify the importance
of transitive relations by measuring the portion of partially
and fully transitive edges.

Figure 9 demonstrates the percentages of fully/partially
transitive edges among all edges added to the edge-labeled
graph during analysis. It is worthy pointing out that de-
rived edges are typically orders of magnitude greater than

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 15

terminal edges, i.e., the labeled edges in the input graph;
hence, the number of added edges is very close to the
total number of edges at the conclusion. For instance, the
difference is less than 1% for perlbench in value-flow anal-
ysis. These statistics are collected after the CFL-reachability
analysis reaches a fixed point. “VF:A-edge” denotes fully
transitive A-edges in value-flow analysis, and “AA:V -edge”
and “AA:A-edge” represents partially transitive V -edges
and fully transitive A-edges in alias analysis, respectively.

Result. In value-flow analysis, fully transitive edges (A-
edges) account for a percentage of 84.49% on average and
there are no partially transitive edges. In alias analysis, fully
transitive edges (A-edges) represent a negligible proportion
(2.0%) while partially transitive edges (V -edges) occupy
54.81% of total added edges on average.

Discussion. As shown in columns 2-5 and 6-9 of Table 2,
offline preprocessing has already pruned a large number
of fully transitive edges. However, transitive edges still
make up a significant proportion of all edges added during
reachability solving in value-flow analysis (84.49%) and
alias analysis (56.81%). Thus, it is essential to accelerate edge
derivations involving transitive edges to efficiently solve
CFL-reachability problems. It is also worth mentioning that
we use normalized grammar for calculation, which includes
the intermediate reachability relations introduced during
grammar normalization. Without this normalization step,
the percentages of transitive edges would be higher.

5.5 RQ4. Effectiveness of Propagation Graph

To show the effectiveness of propagation graph, we mainly
conduct two experiments: (1) compare PEARLPG with
PEARL; (2) compare propagation graph with the spanning
tree model on top of POCR.

5.5.1 PEARLPG vs. PEARL

Speedups. As demonstrated in Table 4 and Table 5, when
applying propagation graph on top of multi-derivation,
PEARLPG obtains speedups of 1.87× and 3.86× over PEARL
in two clients. Recall that we rewrite the input CFGs to
remove part of transitive redundancy (Figure 5c and Fig-
ure 6c), otherwise, the performance gap would be more
significant.

Discussion. According to our empirical experience, there
are two kinds of transitive redundancy: (1) syntactic redun-
dancy, which can be eliminated easily by grammar rewriting,
and (2) dynamic redundancy, which can only be detected
on the fly. In principle, both kinds of redundancy can
be diminished by PEARLPG (or POCR), while we perform
grammar rewriting for PEARL and STD to remove syntactic
redundancy beforehand in our experiments.

We observe that grammar rewriting can eliminate a sig-
nificant portion of secondary edges in value-flow analysis,
but this is not the case for alias analysis. In alias analysis,
there is still a large amount of dynamic redundancy, which
can not be reduced by grammar rewriting. As a result,
there is more room for optimization and, thus propagation
graph performs better in alias analysis, obtaining a larger
performance improvement than in value-flow analysis.

ca
ct
us

im
ag
ic
k

le
el
a
na
b

om
ne
tp
p

pa
re
st

pe
rl
be
nc
h

po
vr
ay

x2
64 xz

0

10

20

30 POCR

POCRPG

Fig. 10: Computational redundancy of value-flow analysis

ca
ct
us

im
ag
ic
k

le
el
a
na
b

om
ne
tp
p

pa
re
st

pe
rl
be
nc
h

po
vr
ay

x2
64 xz

0

10

20

30

40
POCR

POCRPG

Fig. 11: Computational redundancy of alias analysis

5.5.2 Spanning Tree vs. Propagation Graph

To evaluate the effectiveness of the propagation graph rep-
resentation in eliminating redundant derivations, we design
an ablation of POCR, namely POCRPG. In this ablation, we
replace only the spanning tree model of POCR with the prop-
agation graph representation, leaving all other components
of POCR untouched. We compare POCRPG with POCR in
terms of the reduced derivations and overall performance.
Recall that both algorithms follow the single-reachability
relation derivation (SRD) manner, so the number of deriva-
tions equals the number of propagations.

Computational Redundancy. Figure 10 and Figure 11
evaluate the computational redundancy defined by D/A,
where D and A are the number of total derivations and
the number of edges added to the graph. Computational
redundancy measures how many derivations are needed
for an actual edge addition on average. Lower computa-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 16

tional redundancy means that more repetitive derivations
are eliminated during the solving process. The computa-
tional redundancy of POCRPG and POCR are close for most
benchmarks. On average, the redundancy values of POCR
are 2.36 and 3.2 in value-flow analysis and alias analysis,
respectively. The average redundancy values of POCRPG are
5.64 in value-flow analysis and 5.48 in alias analysis.

Discussion. POCR maintains two spanning trees, a pre-
decessor tree and a successor tree for each node (as the
tree root) [23], [40]. Given a fully transitive relation A, the
spanning tree model ensures that each node in a tree is
reachable from the root node via only one path. On the
other hand, POCRPG retains a global propagation graph for
all nodes, where a node pair can be connected via multiple
reachable A-paths. As a result, POCR eliminates more repeti-
tive derivations than POCRPG commonly. However, we find
that reducing more derivations does not necessarily result
in better performance since it can also entail maintenance
costs.

Overall Performance. The performance statistics of
POCRPG for value-flow and alias analysis are respectively
listed in Table 4 and Table 5. POCRPG achieves an average
speedup of 1.97x over POCR for value-flow analysis (Ta-
ble 4). For alias analysis (Table 5), POCRPG runs slightly
faster (1.02x) than POCR. Furthermore, POCRPG outperforms
POCR in almost every benchmark.

Discussion. We notice that POCR takes a non-trivial
amount of work to maintain spanning trees in our exper-
iments, especially when fully transitive edges are dense.
This is because an edge is usually copied multiple times by
the spanning tree model, which incurs both computation
and storage overhead. The larger speedup in value-flow
analysis than in alias analysis achieved by POCRPG over
POCR, confirms the aforementioned statistics that fully tran-
sitive relations dominate in value-flow analysis (Figure 9).
In addition, POCRPG saves a lot of memory compared to
POCR, particularly in value-flow analysis (Figure 7). This is
because our propagation graph representation is conceptu-
ally simple and cheap to update on the fly. For the povary
benchmark, POCRPG consumes approximately 5 GB con-
sumed memory while POCR uses nearly 55 GB consumed
memory. This emphasizes that exhaustively diminishing
computational redundancy by POCR does not necessarily
result in improved overall performance, because it can entail
additional costs to maintain the acyclic property of spanning
trees. In alias analysis, the performance of POCRPG and
POCR are comparable because fully transitive edges only
take a small proportion and the representation maintenance
cost is negligible compared to overall solving time. POCRPG

is slower than POCR in only one benchmark, i.e., omnetpp,
for alias analysis. This discrepancy is primarily due to a
considerable number of erroneously introduced secondary
edges in the propagation graph due to insertion order
(Section 4.2.3).

To sum up, propagation graph representation is effec-
tive (keeping reasonable computational redundancy) and
lightweight (cheap to maintain) for both two clients, achiev-
ing a promising overall performance. Moreover, when com-
pared to the spanning tree model, propagation graph is
conceptually simple, making it easy to implement.

6 RELATED WORK

This work is relevant to improving the efficiency of CFL-
reachability analysis. Initially proposed in the context of
database theory [15], the CFL-reachability framework be-
comes popular in formulating many program analysis prob-
lems [6]. Since then, CFL-reachability has been studied in
various contexts such as recursive state machine [23], [41],
pushdown system [42], [43], [44], set constraint [20], [27] and
visibly pushdown languages [45] (a subset of deterministic
CFL). It is commonly known that CFL-reachability-based
algorithms have a cubic worst-case complexity. Previous
work [16] showed that the Four Russians’ Trick could yield
a subcubic algorithm by utilizing set operations of bit-
vectors at low amortized time, which is orthogonal to our
approach. So far, Significant progress has been made for
specific clients, such as bidirected Dyck-reachability [10],
[32], [46], IFDS-based analysis [47], [48], [49], [50], [51], [52],
[53], pointer analysis [7], [8], [9], [12], [13], [14], [54], to just
name a few. In such cases, algorithms are typically designed
for a predefined context-free grammar with specialized op-
timizations. In principle, our techniques can be applied on
top of them to yield better performance.

A prevalent solution to avoid derivation redundancy
is to construct summary edges for common paths [1], [3],
[12], [13], [14], [20], [55], known as summarization. Sparse
analysis [24], [25], [50], [55], [56], [57], [58], [59] adopts
a similar idea by summarizing data dependencies to skip
unnecessary paths. However, summarization does not fun-
damentally address the derivation redundancy due to the
single-reachability derivation manner and transitivity solv-
ing, and thus its effectiveness is limited. Reducing the graph
size by offline preprocessing techniques [17], [18], [19], [38]
can also alleviate redundancy. Nevertheless, a large amount
of redundancy can only be captured during online CFL-
reachability solving because edges are dynamically derived
and inserted into the graph.

Factorized databases [60] also exploit a similar “batch-
ing” idea, known as factorization, to evaluate join and
aggregation queries in relational databases (without sup-
port for recursion). For acyclic conjunctive query evaluation,
efficient algorithms such as the Yannakakis algorithm [61]
have also been proposed to avoid computation redundancy.
Nonetheless, these algorithms cannot be directly applied to
CFL-reachability analysis. To diminish unnecessary compu-
tations, Graspan [21] utilizes a few data processing tech-
niques from a novel “Big Data” perspective. Datalog engines
such as Souffle [22], [62] adopt the semi-naive evaluation
strategy. However, these general frameworks are unaware
of the graph features (e.g., transitivity) and the program
analysis workloads (e.g., Dyck-style productions), and thus
still exhibit a substantial amount of derivation redundancy,
as shown in previous work [23].

More recently, POCR [23] accelerates CFL-reachability
solving by taming transitive redundancy via partially or-
dered CFL-reachability solving. As confirmed by both previ-
ous work [23] and our experiments, the grammar rewriting
technique can also contribute to the reduction of redun-
dancy due to transitivity. Different from existing techniques,
our multi-derivation approach effectively reduces deriva-
tion redundancy by propagating reachability relations in

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 17

batches on sparse constraint graphs.
A class of set constraints and CFL-reachability were

also shown to be interconvertible [27]. Later, a practical
work [20] described a set constraint reduction for Dyck-CFL-
reachability. In those works, a CFL-reachability instance is
first transformed into a set constraint problem and is then
solved by an off-the-shelf constraint solver. Unfortunately,
constraint solvers are typically not specialized for CFL-
reachability problems. While our work also solves CFL-
reachability from a constraint-solving perspective, we argue
that our constraint rules are considerably simpler and easier
to follow. Moreover, we propose a general multi-derivation
CFL-reachability framework, which can leverage the fea-
tures of CFL-reachability problems to accelerate the CFL-
reachability solving process, e.g., accelerating transitivity
solving by employing the propagation graph representation,
and optimizing the solving process of Dyck-style produc-
tions. We hope that our work can pave the way to further
exploit the practical side of CFL-reachability solving.

7 CONCLUSION AND FUTURE WORK

This paper has proposed PEARL, a multi-derivation approach
via efficient constraint-solving, which reduces consider-
able derivation redundancy introduced by the conventional
single-reachability derivation manner. Our key insight is
that multiple edges can be simultaneously derived via batch
propagation of reachability relations. We also introduce a
simple yet effective propagation graph representation on
top of the multi-derivation framework to further reduce the
redundancy due to transitive relations, which are ubiquitous
in CFL-based program analyses. This results in a highly
efficient transitive-aware variant, PEARLPG. We evaluate
our approach by conducting extensive experiments on two
popular clients, context-sensitive value-flow analysis and
field-sensitive alias analysis for C/C++. The empirical re-
sults demonstrate that, by eliminating a large amount of
derivation redundancy, our method outperforms existing
approaches with promising speedups. In particular, the
comparison with a state-of-the-art solver POCR (designed
for fast transitivity solving), shows that PEARLPG runs 3.09×
(up to 4.44×) and 2.25× (up to 3.31×) faster than POCR
on average, respectively for value-flow analysis and alias
analysis, while also reducing memory consumption.

We also discuss the practical side of CFL-reachability
analysis, such as optimization for Dyck-style productions.
We hope that more opportunities can be explored on top of
our multi-derivation framework.

ACKNOWLEDGMENT

We thank the reviewers for their constructive comments.
This work is supported by the National Key R&D Program
of China (2022YFB3103900), the National Natural Science
Foundation of China (NSFC) under grant number 62132020
and 62202452, and the China Postdoctoral Science Founda-
tion under grant number 2024M753295.

REFERENCES

[1] T. Reps, S. Horwitz, and M. Sagiv, “Precise Interprocedural
Dataflow Analysis via Graph Reachability,” in Proceedings of the
22nd ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, 1995, pp. 49–61.

[2] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise
Context, Flow, Field, Object-sensitive and Lifecycle-aware Taint
Analysis for Android Apps,” Acm Sigplan Notices, vol. 49, no. 6,
pp. 259–269, 2014.

[3] T. Reps, S. Horwitz, M. Sagiv, and G. Rosay, “Speeding up Slicing,”
ACM SIGSOFT Software Engineering Notes, vol. 19, no. 5, pp. 11–20,
1994.

[4] M. Sridharan, S. J. Fink, and R. Bodik, “Thin Slicing,” in Proceedings
of the 28th ACM SIGPLAN conference on programming language
design and implementation, 2007, pp. 112–122.

[5] Y. Li, T. Tan, Y. Zhang, and J. Xue, “Program Tailoring: Slicing by
Sequential Criteria,” in 30th European Conference on Object-Oriented
Programming (ECOOP 2016). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2016.

[6] T. Reps, “Program Analysis via Graph Reachability,” Information
and software technology, vol. 40, no. 11-12, pp. 701–726, 1998.

[7] M. Sridharan, D. Gopan, L. Shan, and R. Bodı́k, “Demand-driven
Points-to Analysis for Java,” ACM SIGPLAN Notices, vol. 40,
no. 10, pp. 59–76, 2005.

[8] M. Sridharan and R. Bodı́k, “Refinement-based Context-sensitive
Points-to Analysis for Java,” ACM SIGPLAN Notices, vol. 41, no. 6,
pp. 387–400, 2006.

[9] X. Zheng and R. Rugina, “Demand-driven Alias Analysis for C,”
in Proceedings of the 35th annual ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, 2008, pp. 197–208.

[10] Q. Zhang, M. R. Lyu, H. Yuan, and Z. Su, “Fast Algorithms for
Dyck-CFL-reachability with Applications to Alias Analysis,” in
Proceedings of the 34th ACM SIGPLAN conference on Programming
language design and implementation, 2013, pp. 435–446.

[11] G. Xu, A. Rountev, and M. Sridharan, “Scaling CFL-reachability-
based Points-to Analysis using Context-sensitive Must-not-alias
Analysis,” in ECOOP, vol. 9. Springer, 2009, pp. 98–122.

[12] D. Yan, G. Xu, and A. Rountev, “Demand-driven Context-sensitive
Alias Analysis for Java,” in Proceedings of the 2011 International
Symposium on Software Testing and Analysis, 2011, pp. 155–165.

[13] L. Shang, X. Xie, and J. Xue, “On-demand Dynamic Summary-
based Points-to Analysis,” in Proceedings of the Tenth International
Symposium on Code Generation and Optimization, 2012, pp. 264–274.

[14] Y. Su, D. Ye, and J. Xue, “Parallel Pointer Analysis with CFL-
reachability,” in 2014 43rd International Conference on Parallel Pro-
cessing. IEEE, 2014, pp. 451–460.

[15] M. Yannakakis, “Graph-theoretic Methods in Database Theory,” in
Proceedings of the ninth ACM SIGACT-SIGMOD-SIGART symposium
on Principles of database systems, 1990, pp. 230–242.

[16] S. Chaudhuri, “Subcubic Algorithms for Recursive State Ma-
chines,” in Proceedings of the 35th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, 2008, pp. 159–
169.

[17] Y. Li, Q. Zhang, and T. Reps, “Fast Graph Simplification for Inter-
leaved Dyck-reachability,” in Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation,
2020, pp. 780–793.

[18] ——, “Fast Graph Simplification for Interleaved-Dyck Reacha-
bility,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 44, no. 2, pp. 1–28, 2022.

[19] Y. Lei, Y. Sui, S. H. Tan, and Q. Zhang, “Recursive State Machine
Guided Graph Folding for Context-free Language Reachability,”
Proceedings of the ACM on Programming Languages, vol. 7, no. PLDI,
pp. 318–342, 2023.

[20] J. Kodumal and A. Aiken, “The Set Constraint/CFL Reachability
Connection in Practice,” ACM Sigplan Notices, vol. 39, no. 6, pp.
207–218, 2004.

[21] K. Wang, A. Hussain, Z. Zuo, G. Xu, and A. Amiri Sani, “Graspan:
A Single-machine Disk-based Graph System for Interprocedural
Static Analyses of Large-scale Systems Code,” ACM SIGARCH
Computer Architecture News, vol. 45, no. 1, pp. 389–404, 2017.

[22] H. Jordan, B. Scholz, and P. Subotić, “Soufflé: On Synthesis of
Program Analyzers,” in Computer Aided Verification: 28th Interna-
tional Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016,
Proceedings, Part II 28. Springer, 2016, pp. 422–430.

[23] Y. Lei, Y. Sui, S. Ding, and Q. Zhang, “Taming Transitive Redun-
dancy for Context-free Language Reachability,” Proceedings of the
ACM on Programming Languages, vol. 6, no. OOPSLA2, pp. 1556–
1582, 2022.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 18

[24] Y. Sui, D. Ye, and J. Xue, “Static Memory Leak Detection using Full-
sparse Value-flow Analysis,” in Proceedings of the 2012 International
Symposium on Software Testing and Analysis, 2012, pp. 254–264.

[25] ——, “Detecting Memory Leaks Statically with Full-sparse Value-
flow Analysis,” IEEE Transactions on Software Engineering, vol. 40,
no. 2, pp. 107–122, 2014.

[26] C. Shi, H. Li, Y. Sui, J. Lu, L. Li, and J. Xue, “Two Birds with One
Stone: Multi-Derivation for Fast Context-free Language Reacha-
bility Analysis,” in 2023 38th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE Computer Society,
2023, pp. 624–636.

[27] D. Melski and T. Reps, “Interconvertibility of a Class of Set
Constraints and Context-free-language Reachability,” Theoretical
Computer Science, vol. 248, no. 1-2, pp. 29–98, 2000.

[28] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduc-
tion to Algorithms. MIT press, 2022.

[29] C. Fecht and H. Seidl, “Propagating Differences: An Efficient New
Fixpoint Algorithm for Distributive Constraint Systems,” Nord. J.
Comput., vol. 5, no. 4, pp. 304–329, 1998.

[30] D. J. Pearce, P. H. Kelly, and C. Hankin, “Online Cycle Detection
and Difference Propagation for Pointer Analysis,” in Proceedings
Third IEEE International Workshop on Source Code Analysis and
Manipulation. IEEE, 2003, pp. 3–12.

[31] M. Sridharan and S. J. Fink, “The Complexity of Andersen’s Anal-
ysis in Practice,” in Static Analysis: 16th International Symposium,
SAS 2009, Los Angeles, CA, USA, August 9-11, 2009. Proceedings 16.
Springer, 2009, pp. 205–221.

[32] K. Chatterjee, B. Choudhary, and A. Pavlogiannis, “Optimal Dyck
Reachability for Data-Dependence and Alias Analysis,” Proceed-
ings of the ACM on Programming Languages, vol. 2, no. POPL, pp.
1–30, 2017.

[33] Q. Shi, Y. Wang, P. Yao, and C. Zhang, “Indexing the Extended
Dyck-CFL Reachability for Context-sensitive Program Analysis,”
Proceedings of the ACM on Programming Languages, vol. 6, no.
OOPSLA2, pp. 1438–1468, 2022.

[34] D. M. Moyles and G. L. Thompson, “An Algorithm for Finding
a Minimum Equivalent Graph of a Digraph,” Journal of the ACM
(JACM), vol. 16, no. 3, pp. 455–460, 1969.

[35] D. Gries, A. J. Martin, J. L. A. v. d. Snepscheut, and J. T. Udding,
“An Algorithm for Transitive Reduction of an Acyclic Graph,” Sci.
Comput. Program., vol. 12, no. 2, pp. 151–155, 1989.

[36] A. V. Aho, M. R. Garey, and J. D. Ullman, “The Transitive Reduc-
tion of a Directed Graph,” SIAM Journal on Computing, vol. 1, no. 2,
pp. 131–137, 1972.

[37] R. Tarjan, “Depth-first Search and Linear Graph Algorithms,”
SIAM journal on computing, vol. 1, no. 2, pp. 146–160, 1972.

[38] A. Rountev and S. Chandra, “Off-line Variable Substitution for
Scaling Points-to analysis,” Acm Sigplan Notices, vol. 35, no. 5, pp.
47–56, 2000.

[39] Y. Sui and J. Xue, “SVF: Interprocedural Static Value-flow Analysis
in LLVM,” in Proceedings of the 25th international conference on
compiler construction. ACM, 2016, pp. 265–266.

[40] G. F. Italiano, “Amortized Efficiency of a Path Retrieval Data
Structure,” Theoretical Computer Science, vol. 48, pp. 273–281, 1986.

[41] R. Alur, M. Benedikt, K. Etessami, P. Godefroid, T. Reps, and
M. Yannakakis, “Analysis of Recursive State Machines,” ACM
Transactions on Programming Languages and Systems (TOPLAS),
vol. 27, no. 4, pp. 786–818, 2005.

[42] T. Reps, S. Schwoon, and S. Jha, “Weighted Pushdown Systems
and their Application to Interprocedural Dataflow Analysis,” in
International Static Analysis Symposium. Springer, 2003, pp. 189–
213.

[43] T. Reps, S. Schwoon, S. Jha, and D. Melski, “Weighted Pushdown
Systems and their Application to Interprocedural Dataflow Analy-
sis,” Science of Computer Programming, vol. 58, no. 1-2, pp. 206–263,
2005.

[44] J. Späth, K. Ali, and E. Bodden, “Context-, Flow-, and Field-
sensitive Data-flow Analysis using Synchronized Pushdown Sys-
tems,” Proceedings of the ACM on Programming Languages, vol. 3,
no. POPL, pp. 1–29, 2019.

[45] R. Alur and P. Madhusudan, “Visibly Pushdown Languages,” in
Proceedings of the thirty-sixth annual ACM symposium on Theory of
computing, 2004, pp. 202–211.

[46] Y. Li, K. Satya, and Q. Zhang, “Efficient Algorithms for Dynamic
Bidirected Dyck-reachability,” Proceedings of the ACM on Program-
ming Languages, vol. 6, no. POPL, pp. 1–29, 2022.

[47] N. A. Naeem, O. Lhoták, and J. Rodriguez, “Practical Extensions
to the IFDS Algorithm,” in Compiler Construction: 19th International
Conference, CC 2010, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March
20-28, 2010. Proceedings 19. Springer, 2010, pp. 124–144.

[48] S. Arzt and E. Bodden, “Reviser: Efficiently Updating IDE-/IFDS-
based Data-flow Analyses in Response to Incremental Program
Changes,” in Proceedings of the 36th International Conference on
Software Engineering, 2014, pp. 288–298.

[49] J. Späth, L. Nguyen Quang Do, K. Ali, and E. Bodden,
“Boomerang: Demand-driven Flow-and Context-sensitive Pointer
Analysis for Java,” in 30th European Conference on Object-Oriented
Programming (ECOOP 2016). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2016.

[50] D. He, H. Li, L. Wang, H. Meng, H. Zheng, J. Liu, S. Hu, L. Li,
and J. Xue, “Performance-boosting Sparsification of the IFDS
Algorithm with Applications to Taint Analysis,” in 2019 34th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 2019, pp. 267–279.

[51] S. Arzt, “Sustainable Solving: Reducing the Memory Footprint of
IFDS-based Data Flow Analyses using Intelligent Garbage Collec-
tion,” in 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE). IEEE, 2021, pp. 1098–1110.

[52] H. Li, H. Meng, H. Zheng, L. Cao, J. Lu, L. Li, and L. Gao, “Scaling
up the IFDS Algorithm with Efficient Disk-assisted Computing,”
in 2021 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO). IEEE, 2021, pp. 236–247.

[53] H. Li, J. Lu, H. Meng, L. Cao, L. Li, and L. Gao, “Boosting the Per-
formance of Multi-solver IFDS Algorithms with Flow-Sensitivity
Optimizations,” in 2024 IEEE/ACM International Symposium on
Code Generation and Optimization (CGO). IEEE, 2024, pp. 296–307.

[54] Q. Zhang, X. Xiao, C. Zhang, H. Yuan, and Z. Su, “Efficient
Subcubic Alias Analysis for C,” in Proceedings of the 2014 ACM
International Conference on Object Oriented Programming Systems
Languages & Applications, 2014, pp. 829–845.

[55] L. Li, C. Cifuentes, and N. Keynes, “Precise and Scalable Context-
sensitive Pointer Analysis via Value Flow Graph,” ACM SIGPLAN
Notices, vol. 48, no. 11, pp. 85–96, 2013.

[56] ——, “Boosting the Performance of Flow-sensitive Points-to Anal-
ysis using Value Flow,” in Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European conference on Foundations of soft-
ware engineering, 2011, pp. 343–353.

[57] Y. Sui and J. Xue, “On-demand Strong Update Analysis via Value-
flow Refinement,” in Proceedings of the 2016 24th ACM SIGSOFT
international symposium on foundations of software engineering, 2016,
pp. 460–473.

[58] ——, “Value-flow-based Demand-driven Pointer Analysis for C
and C++,” IEEE Transactions on Software Engineering, vol. 46, no. 8,
pp. 812–835, 2018.

[59] Q. Shi, X. Xiao, R. Wu, J. Zhou, G. Fan, and C. Zhang, “Pinpoint:
Fast and Precise Sparse Value Flow Analysis for Million Lines
of Code,” in Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2018, pp. 693–
706.

[60] D. Olteanu and M. Schleich, “Factorized Databases,” ACM SIG-
MOD Record, vol. 45, no. 2, pp. 5–16, 2016.

[61] M. Yannakakis, “Algorithms for acyclic database schemes,” in
VLDB, vol. 81, 1981, pp. 82–94.

[62] M. Bravenboer and Y. Smaragdakis, “Strictly Declarative Specifica-
tion of Sophisticated Points-to Analyses,” in Proceedings of the 24th
ACM SIGPLAN conference on Object oriented programming systems
languages and applications, 2009, pp. 243–262.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 19

Chenghang Shi Chenghang Shi received his
B.Eng degree in Software Engineering from
Tongji University in 2021. He is currently pur-
suing his Ph.D. degree at Institute of Comput-
ing Technology, Chinese Academy of Sciences,
and University of Chinese Academy of Sciences.
His research interests are in the areas of pro-
gramming languages and software engineering,
specifically focusing on program analysis tech-
niques.

Haofeng Li Haofeng Li received his BS degree
from Shandong University in 2017 and his PhD
degree from the Institute of Computing Technol-
ogy, Chinese Academy of Sciences in 2023. He
is currently an assistant professor in the Institute
of Computing Technology, Chinese Academy of
Sciences. His research interests include pro-
gram analysis, pointer analysis and bug detec-
tion.

Yulei Sui Yulei Sui is an Associate Professor at
School of Computer Science and Engineering,
University of New South Wales (UNSW). He is
broadly interested in Program Analysis, Secure
Software Engineering and Machine Learning.
In particular, his research focuses on building
open-source frameworks for static analysis and
verification techniques to improve the reliability
and security of modern software systems. His re-
cent interest lies at the intersection of program-
ming languages, natural languages and code

LLMs. Specifically, his current research projects include analysis and
verification for software systems and AI models.

Jie Lu Jie Lu received his BS degree in Com-
puter Science from Sichuan University in 2014
and his PhD degree from the Institute of Com-
puting Technology, Chinese Academy of Sci-
ences in 2020. He is currently an associate pro-
fessor in the Institute of Computing Technology,
Chinese Academy of Sciences. His research in-
terests include program analysis, log analysis
and distributed systems.

Lian Li Lian Li received his BSc degree in En-
gineering physics from Tsinghua University in
1998 and his PhD degree from University of New
South Wales in 2007. He is currently a professor
in the Institute of Computing Technology, Chi-
nese Academy of Sciences, where he leads the
Program Analysis Group.

Lian Li’s main research interest focuses on
program analysis, more specifically, on program
analysis techniques and practical tools for im-
proving software safety and security.

Jingling Xue (IEEE Fellow) Jingling Xue
is a Scientia Professor at UNSW Sydney,
leading the Programming Languages and
Compilers group in the School of Computer
Science and Engineering. He received his
B.Eng and M.Eng degrees in Computer
Science and Engineering from Tsinghua
University in 1984 and 1987, respectively,
and his PhD degree in Computer Science
and Engineering from Edinburgh University in
1992.

His research focuses on programming languages, compiler
technology, and program analysis. He has supervised 31 PhD students
and shares his research outcomes through open-source tools like SVF
(https://svf-tools.github.io/SVF), Qilin (https://qilinpta.github.io/Qilin),
and RuPTA (https://rustanlys.github.io/rupta/). He has received multiple
awards at CGO, ECOOP, ICSE, FSE, ASE, and ISSTA.

Jingling Xue has served as PC and GC Chair at LCTES’13, CC’18,
CGO’20, and CGO’24, and as a PC member at over 200 international
conferences.

	Introduction
	Background
	CFL-reachbility
	The Standard Algorithm
	Graph Representation
	Transitive Production Rules

	Pearl in a nutshell
	The Multi-derivation Approach
	Tailoring Multi-derivation for Transitivity

	Methodology
	Multi-derivation via Constraint Solving
	A Constraint-Solving Perspective
	The Multi-derivation Algorithm
	Optimization for Dyck-style Productions

	Reducing Transitive Redundancy with Propagation Graphs
	Propagation Graphs
	Dynamic Construction of Propagation Graph
	Implementation Strategy
	Multi-derivation for Partially Transitive Productions
	Correctness
	Time and Space Complexity

	Evaluation
	Experimental Setup
	RQ1. Comparison with Std
	RQ2. Comparison with Pocr
	RQ3. Transitive Edges
	RQ4. Effectiveness of Propagation Graph
	PearlPG vs. Pearl
	Spanning Tree vs. Propagation Graph

	Related Work
	Conclusion and Future Work
	References
	Biographies
	Chenghang Shi
	Haofeng Li
	Yulei Sui
	Jie Lu
	Lian Li
	Jingling Xue

