
Two Birds with One Stone:
Multi-Derivation for Fast Context-

Free Language Reachability Analysis
Chenghang Shi, Haofeng Li, Yulei Sui,

Jie Lu, Lian Li, Jingling Xue

Institute of Computing
Technology

University of Chinese
Academy Sciences

University of New
South Wales

CFL (Context-Free Language) Reachability

• Fundamental framework for program analysis
• Taint Analysis
• Pointer Analysis
• Bug Detection
• Program Slicing
• ...

What is CFL-Reachability?

CFL-reachability extends the conventional graph reachability problem
to an with a .

What is CFL-Reachability?

CFL-reachability extends the conventional graph reachability problem
to an with a .

0 1 2
a b

Edge-labeled Graph G

3
c

What is CFL-Reachability?

CFL-reachability extends the conventional graph reachability problem
to an with a .

0 1 2
a b

Edge-labeled Graph G

3
c

What is CFL-Reachability?

CFL-reachability extends the conventional graph reachability problem
to an with a .

0 1 2
a b

Edge-labeled Graph G

3
c

Context-free Grammar of L

X ::= a b
Y ::= X c

What is CFL-Reachability?

CFL-reachability extends the conventional graph reachability problem
to an with a .

Edge-labeled Graph G Context-free Grammar of L

X ::= a b
Y ::= X c

0 1 2
a b

3
c

An Example

An holds between Node 0 and Node 2, i.e.,
Node 2 is X-reachable from Node 0

Edge-labeled Graph G Context-free Grammar of L

X ::= a b
Y ::= X c

0 1 2
a b

3
c

An Example

Insert an from Node 0 to Node 2!

X ::= a b
Y ::= X c

0 1 2
a b

3
c

X

An Example

A holds between Node 0 and Node 3

0 1 2
a b

3
c X ::= a b

Y ::= X c

X

An Example

0 1 2
a b

3
c X ::= a b

Y ::= X c

Insert a from Node 0 to Node 3!

X
Y

Limitation of Existing Approaches

0
1 2

a
b 3

c

n a

: existing CFL algorithms process multiple a-
reachability relations separately, which causes redundancy

...

X Y

X ::= a b
Y ::= X c

Multi-Derivation

Packing multiple a-reachability relations together

X ::= a b
Y ::= X c

0

1 2
a b 3

c

n......

Multi-Derivation

Propagating relations in batch via b-edge ->
multiple new relations produced

X ::= a b
Y ::= X c

0

1 2
a b 3

c
X

n......

Multi-Derivation

Propagating relations in batch via c-edge ->
multiple new relations produced

X ::= a b
Y ::= X c

0

1 2
a b 3

c
X

Yn......

Multi-Derivation

Difference propagation!

X ::= a b
Y ::= X c

0

1 2
a b 3

c
X

Yn......

Optimize Multi-Derivation for Transitivity

• Transitive relations are ubiquitous in CFL-based program analysis, e.g.,
data flow, control flow are transitive.

Optimize Multi-Derivation for Transitivity

• Transitive relations are ubiquitous in CFL-based program analysis, e.g.,
data flow, control flow are transitive.

• Relation A is transitive if we have:

� ∷= � � or � ∷= �∗ or � ∷= �+...

Optimize Multi-Derivation for Transitivity

• Transitive relations are ubiquitous in CFL-based program analysis, e.g.,
data flow, control flow are transitive.

• Relation A is transitive if we have:

• Property: two consecutive A-edges form a new A-Edge.

� ∷= � � or � ∷= �∗ or � ∷= �+...

Optimize Multi-Derivation for Transitivity

• Transitive relations are ubiquitous in CFL-based program analysis, e.g.,
data flow, control flow are transitive.

• Relation A is transitive if we have:

• Property: two consecutive A-edges form a new A-Edge.

� ∷= � � or � ∷= �∗ or � ∷= �+...

1 2A 3A

A

Redundant Propagation due to Transitivity

A ::= A A
X ::= X A

The X-reachability relations of Node 1 are propagated twice from Node
1 to Node 3

1 2A 3A

A

Redundant Propagation due to Transitivity

A ::= A A
X ::= X A

The X-reachability relations of Node 1 are propagated twice from Node
1 to Node 3

1 2A 3A

A

Redundant Propagation due to Transitivity

Shortcut path causes redundant propagation!

1 2A 3A

A

A ::= A A
X ::= X A

The X-reachability relations of Node 1 are propagated twice from Node
1 to Node 3

Propagation Graph

• A transitivity-aware propagation graph, PG(A) for transitive relation A
• With redundant edges excluded (partially)

Propagation Graph

• A transitivity-aware propagation graph, PG(A) for transitive relation A
• With redundant edges excluded (partially)

1 2A 3A

A

Propagation Graph

• A transitivity-aware propagation graph, PG(A) for transitive relation A
• With redundant edges excluded (partially)

• Construction
• Subgraph induced from the original edge-labeled graph
• Constructed on the fly

1 2A 3A

A

Propagation Graph

• The construction of propagation graph is non-trivial
• Duplicate A-edges can be introduced by other productions rather

than A ::= A A
• Can be seen as partial transitive reduction
• Please refer to our paper for more details

1 2A 3A

A

Solving Transitivity via Multi-Derivation

• A ::= A A: propagating A-reachability relations in batch in PG(A)

• X ::= X A: propagating X-reachability relations in batch in PG(A)

Solving Transitivity via Multi-Derivation

• A ::= A A: propagating A-reachability relations in batch in PG(A)

• X ::= X A: propagating X-reachability relations in batch in PG(A)

• PG(A) is constructed on the fly with redundant edges excluded

Solving Transitivity via Multi-Derivation

• A ::= A A: propagating A-reachability relations in batch in PG(A)

• X ::= X A: propagating X-reachability relations in batch in PG(A)

• PG(A) is constructed on the fly with redundant edges excluded

• X ::= A X can be handled similarly as X ::= X A

Evaluation

• Implementation: SVF, https://github.com/SVF-tools/SVF
• CFL-reachability solver: Pearl

• 2 popular clients: Value-Flow Analysis and Alias Analysis for C++
• 10 benchmarks from SPEC CPU2017 C/C++
• Compare with

• the standard algorithm
• POCR[OOPSLA’22] for fast transitivity solving

Performance
Field-Sensitive Alias Analysis

Speed up over POCR: 2.4x (avg.), 4.2x(max.)

Performance
Context-Sensitive Value Flow Analysis

Speed up over POCR: 10.1x (avg.), 29.2x(max.)

Performance
Context-Sensitive Value Flow Analysis

For perlbench, reduce 84% memory usage over POCR

Ablation Study

• Pwb (Pearl without batch propagation)
• Value-Flow Analysis: Pwb is 7.2x faster than POCR, and 1.3x slower than Pearl
• Alias Analysis: Pwb is comparable with POCR, and 2.2x slower than Pearl

Ablation Study

• Pwb (Pearl without batch propagation)
• Value-Flow Analysis: Pwb is 7.2x faster than POCR, and 1.3x slower than Pearl
• Alias Analysis: Pwb is comparable with POCR, and 2.2x slower than Pearl

• Reason of different speedups
• Propagation graph is simple yet effective, especially when transitive relations

dominates, e.g., in value-flow analysis.
• Value-flow analysis has no productions in the form of X ::= X A, so the

effectiveness of multi-derivation is limited.

Effectiveness of Multi-Derivation

How many propagations of transitive
relations can be reduced?

Reduction rates (Pearl v.s. Pwb)
• Value-flow analysis: 79.3%
• Alias analysis: 98.5%

Reduction rates in propagations of
transitive relations

Conclusion

• Contributions
• A multi-derivation approach to CFL-reachability
• A transitivity-aware propagation graph representation
• A highly efficient CFL-reachability solver, Pearl

Conclusion

• Contributions
• A multi-derivation approach to CFL-reachability
• A transitivity-aware propagation graph representation
• A highly efficient CFL-reachability solver, Pearl

• Artifact available
• Docker image and instructions for reproduction
• https://figshare.com/articles/dataset/ASE_2023_artifact/23702271

https://figshare.com/articles/dataset/ASE_2023_artifact/23702271

Thank you for your listening!

Email: chenghangshi@gmail.com

mailto:chenghangshi@gmail.com

Backup Slides

Set Constraint

• Set constraint and CFL reachability are interconvertible
• Two steps

• reduce the CFL problem to a set contraint instance
• solve it using off-the-shelf constraint solver

• Disadvantages
• Unawareness of the graph features, e.g., transitivity
• An extra reduction step

