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CFL (Context-Free Language) Reachability

• Fundamental framework for program analysis
• Taint  Analysis
• Pointer Analysis
• Bug Detection
• Program Slicing
• ...
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CFL-reachability extends the conventional graph reachability problem 
to an  with a .
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An Example

An  holds between Node 0 and Node 2, i.e.,
Node 2 is X-reachable from Node 0

Edge-labeled Graph G Context-free Grammar of L
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An Example

Insert an  from Node 0 to Node 2!
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An Example
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Limitation of Existing Approaches
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: existing CFL algorithms process multiple a-
reachability relations separately, which causes redundancy
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Multi-Derivation

Packing multiple a-reachability relations together 

X ::= a b
Y ::= X c
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Multi-Derivation

Propagating  relations in batch via b-edge -> 
multiple new  relations produced
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Multi-Derivation

Difference propagation!

X ::= a b
Y ::= X c
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Optimize Multi-Derivation for Transitivity

• Transitive relations are ubiquitous in CFL-based program analysis, e.g., 
data flow, control flow are transitive.
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Redundant Propagation due to Transitivity

A ::= A A
X ::= X A 

The X-reachability relations of Node 1 are propagated twice from Node 
1 to Node 3
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Redundant Propagation due to Transitivity

Shortcut path causes redundant propagation!
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A ::= A A
X ::= X A 

The X-reachability relations of Node 1 are propagated twice from Node 
1 to Node 3



Propagation Graph

• A transitivity-aware propagation graph, PG(A) for transitive relation A
• With redundant edges excluded (partially)
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Propagation Graph

• A transitivity-aware propagation graph, PG(A) for transitive relation A
• With redundant edges excluded (partially)

• Construction
• Subgraph induced from the original edge-labeled graph
• Constructed on the fly
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Propagation Graph

• The construction of propagation graph is non-trivial
• Duplicate A-edges can be introduced by other productions rather 

than A ::= A A
• Can be seen as partial transitive reduction
• Please refer to our paper for more details
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Solving Transitivity via Multi-Derivation

 
• A ::= A A: propagating A-reachability relations in batch in PG(A)
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Solving Transitivity via Multi-Derivation

 
• A ::= A A: propagating A-reachability relations in batch in PG(A)

• X ::= X A: propagating X-reachability relations in batch in PG(A)

• PG(A) is constructed on the fly with redundant edges excluded

• X ::= A X can be handled similarly as X ::= X A



Evaluation

• Implementation: SVF, https://github.com/SVF-tools/SVF
• CFL-reachability solver: Pearl

• 2 popular clients: Value-Flow Analysis and Alias Analysis for C++
• 10 benchmarks from SPEC CPU2017 C/C++
• Compare with 

• the standard algorithm
• POCR[OOPSLA’22] for fast transitivity solving



Performance
Field-Sensitive Alias Analysis

Speed up over POCR: 2.4x (avg.), 4.2x(max.)



Performance
Context-Sensitive Value Flow Analysis

Speed up over POCR: 10.1x (avg.), 29.2x(max.)



Performance
Context-Sensitive Value Flow Analysis

For perlbench, reduce 84% memory usage over POCR



Ablation Study

• Pwb (Pearl without batch propagation)
• Value-Flow Analysis: Pwb is 7.2x faster than POCR, and 1.3x slower than Pearl
• Alias Analysis: Pwb is comparable with POCR, and 2.2x slower than Pearl



Ablation Study

• Pwb (Pearl without batch propagation)
• Value-Flow Analysis: Pwb is 7.2x faster than POCR, and 1.3x slower than Pearl
• Alias Analysis: Pwb is comparable with POCR, and 2.2x slower than Pearl

• Reason of different speedups
• Propagation graph is simple yet effective, especially when transitive relations 

dominates, e.g., in value-flow analysis.
• Value-flow analysis has no productions in the form of X ::= X A, so the 

effectiveness of multi-derivation is limited.



Effectiveness of Multi-Derivation

How many propagations of transitive 
relations can be reduced?

Reduction rates (Pearl v.s. Pwb)
• Value-flow analysis: 79.3%
• Alias analysis: 98.5%

Reduction rates in propagations of 
transitive relations



Conclusion

• Contributions
• A multi-derivation approach to CFL-reachability
• A transitivity-aware propagation graph representation
• A highly efficient CFL-reachability solver, Pearl
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• Artifact available 
• Docker image and instructions for reproduction
• https://figshare.com/articles/dataset/ASE_2023_artifact/23702271

https://figshare.com/articles/dataset/ASE_2023_artifact/23702271


Thank you for your listening!

Email: chenghangshi@gmail.com

mailto:chenghangshi@gmail.com


Backup Slides



Set Constraint

• Set constraint and CFL reachability are interconvertible
• Two steps

• reduce the CFL problem to a set contraint instance
• solve it using off-the-shelf constraint solver

• Disadvantages
• Unawareness of the graph features, e.g., transitivity
• An extra reduction step


